Implement ViewROI and base classes

This commit is contained in:
Nathan 2023-11-10 17:27:28 -05:00
parent d8bf4aebf4
commit 5c8ad270ef
14 changed files with 1413 additions and 81 deletions

View File

@ -189,6 +189,7 @@ add_library(lego1 SHARED
LEGO1/mxvideoparamflags.cpp
LEGO1/mxvideopresenter.cpp
LEGO1/mxwavepresenter.cpp
LEGO1/orientableroi.cpp
LEGO1/pizza.cpp
LEGO1/pizzamissionstate.cpp
LEGO1/pizzeria.cpp
@ -210,6 +211,7 @@ add_library(lego1 SHARED
LEGO1/towtrack.cpp
LEGO1/towtrackmissionstate.cpp
LEGO1/viewmanager.cpp
LEGO1/viewroi.cpp
)
if (MINGW)
target_compile_definitions(lego1 PRIVATE DIRECTINPUT_VERSION=0x0500)

180
LEGO1/lodlist.h Normal file
View File

@ -0,0 +1,180 @@
#ifndef LODLIST_H
#define LODLIST_H
#include "assert.h"
#include <stddef.h> // size_t
class LODObject;
// disable: identifier was truncated to '255' characters in the debug information
#pragma warning(disable : 4786)
//////////////////////////////////////////////////////////////////////////////
//
// LODListBase
//
// An LODListBase is an ordered list of LODObjects
// where each successive object in the list has a more complex
// geometric representation than the one preceeding it.
//
class LODListBase {
protected:
LODListBase(size_t capacity);
const LODObject* PushBack(const LODObject*);
const LODObject* PopBack();
public:
virtual ~LODListBase();
const LODObject* operator[](int) const;
// current number of LODObject* in LODListBase
size_t Size() const;
// maximum number of LODObject* LODListBase can hold
size_t Capacity() const;
#ifdef _DEBUG
virtual void Dump(void (*pTracer)(const char*, ...)) const;
#endif
private:
// not implemented
LODListBase(const LODListBase&);
LODListBase& operator=(const LODListBase&);
private:
const LODObject** m_ppLODObject;
size_t m_capacity;
size_t m_size;
};
//////////////////////////////////////////////////////////////////////////////
//
// LODList
//
template <class T>
class LODList : public LODListBase {
public:
LODList(size_t capacity);
const T* operator[](int) const;
const T* PushBack(const T*);
const T* PopBack();
};
//////////////////////////////////////////////////////////////////////////////
//
// LODListBase implementation
inline LODListBase::LODListBase(size_t capacity)
: m_capacity(capacity), m_size(0), m_ppLODObject(new const LODObject*[capacity])
{
#ifdef _DEBUG
int i;
for (i = 0; i < (int) m_capacity; i++) {
m_ppLODObject[i] = 0;
}
#endif
}
inline LODListBase::~LODListBase()
{
// all LODObject* should have been popped by client
assert(m_size == 0);
delete[] m_ppLODObject;
}
inline size_t LODListBase::Size() const
{
return m_size;
}
inline size_t LODListBase::Capacity() const
{
return m_capacity;
}
inline const LODObject* LODListBase::operator[](int i) const
{
assert((0 <= i) && (i < (int) m_size));
return m_ppLODObject[i];
}
inline const LODObject* LODListBase::PushBack(const LODObject* pLOD)
{
assert(m_size < m_capacity);
m_ppLODObject[m_size++] = pLOD;
return pLOD;
}
inline const LODObject* LODListBase::PopBack()
{
const LODObject* pLOD;
assert(m_size > 0);
pLOD = m_ppLODObject[--m_size];
#ifdef _DEBUG
m_ppLODObject[m_size] = 0;
#endif
return pLOD;
}
#ifdef _DEBUG
inline void LODListBase::Dump(void (*pTracer)(const char*, ...)) const
{
int i;
pTracer("LODListBase<0x%x>: Capacity=%d, Size=%d\n", (void*) this, m_capacity, m_size);
for (i = 0; i < (int) m_size; i++) {
pTracer(" [%d]: LOD<0x%x>\n", i, m_ppLODObject[i]);
}
for (i = (int) m_size; i < (int) m_capacity; i++) {
assert(m_ppLODObject[i] == 0);
}
}
#endif
//////////////////////////////////////////////////////////////////////////////
//
// LODList implementation
template <class T>
inline LODList<T>::LODList(size_t capacity) : LODListBase(capacity)
{
}
template <class T>
inline const T* LODList<T>::operator[](int i) const
{
return static_cast<const T*>(LODListBase::operator[](i));
}
template <class T>
inline const T* LODList<T>::PushBack(const T* pLOD)
{
return static_cast<const T*>(LODListBase::PushBack(pLOD));
}
template <class T>
inline const T* LODList<T>::PopBack()
{
return static_cast<const T*>(LODListBase::PopBack());
}
// re-enable: identifier was truncated to '255' characters in the debug information
#pragma warning(default : 4786)
#endif // LODLIST_H

View File

@ -6,55 +6,56 @@
#include <memory.h>
DECOMP_SIZE_ASSERT(Matrix4, 0x40);
DECOMP_SIZE_ASSERT(MxMatrix, 0x8);
DECOMP_SIZE_ASSERT(MxMatrixData, 0x48);
// OFFSET: LEGO1 0x10002320
void MxMatrix::EqualsMatrixData(const Matrix4& p_matrix)
{
*m_data = p_matrix;
}
// OFFSET: LEGO1 0x10002340
void MxMatrix::EqualsMxMatrix(const MxMatrix* p_other)
{
memcpy(m_data, p_other->m_data, 16 * sizeof(float));
}
// OFFSET: LEGO1 0x10002320
void MxMatrix::EqualsMatrixData(const float* p_matrix)
{
memcpy(m_data, p_matrix, 16 * sizeof(float));
}
// OFFSET: LEGO1 0x10002370
void MxMatrix::SetData(float* p_data)
{
m_data = p_data;
*m_data = *p_other->m_data;
}
// OFFSET: LEGO1 0x10002360
void MxMatrix::AnotherSetData(float* p_data)
void MxMatrix::AnotherSetData(Matrix4& p_data)
{
m_data = p_data;
m_data = &p_data;
}
// OFFSET: LEGO1 0x10002390
float* MxMatrix::GetData()
// OFFSET: LEGO1 0x10002370
void MxMatrix::SetData(Matrix4& p_data)
{
return m_data;
m_data = &p_data;
}
// OFFSET: LEGO1 0x10002380
const float* MxMatrix::GetData() const
const Matrix4* MxMatrix::GetData() const
{
return m_data;
}
// OFFSET: LEGO1 0x100023c0
float* MxMatrix::Element(int p_row, int p_col)
// OFFSET: LEGO1 0x10002390
Matrix4* MxMatrix::GetData()
{
return &m_data[p_row * 4 + p_col];
return m_data;
}
// OFFSET: LEGO1 0x100023a0
const float* MxMatrix::Element(int p_row, int p_col) const
{
return &m_data[p_row * 4 + p_col];
return &(*m_data)[p_row][p_col];
}
// OFFSET: LEGO1 0x100023c0
float* MxMatrix::Element(int p_row, int p_col)
{
return &(*m_data)[p_row][p_col];
}
// OFFSET: LEGO1 0x100023e0
@ -67,23 +68,17 @@ void MxMatrix::Clear()
void MxMatrix::SetIdentity()
{
Clear();
m_data[0] = 1.0f;
m_data[5] = 1.0f;
m_data[10] = 1.0f;
m_data[15] = 1.0f;
}
// OFFSET: LEGO1 0x10002850
void MxMatrix::operator=(const MxMatrix& p_other)
{
EqualsMxMatrix(&p_other);
(*m_data)[0][0] = 1.0f;
(*m_data)[1][1] = 1.0f;
(*m_data)[2][2] = 1.0f;
(*m_data)[3][3] = 1.0f;
}
// OFFSET: LEGO1 0x10002430
MxMatrix* MxMatrix::operator+=(const float* p_matrix)
MxMatrix* MxMatrix::operator+=(const Matrix4& p_matrix)
{
for (int i = 0; i < 16; ++i)
m_data[i] += p_matrix[i];
((float*) m_data)[i] += ((float*) &p_matrix)[i];
return this;
}
@ -92,38 +87,38 @@ MxMatrix* MxMatrix::operator+=(const float* p_matrix)
// OFFSET: LEGO1 0x10002460
void MxMatrix::TranslateBy(const float* p_x, const float* p_y, const float* p_z)
{
m_data[12] += *p_x;
m_data[13] += *p_y;
m_data[14] += *p_z;
((float*) m_data)[12] += *p_x;
((float*) m_data)[13] += *p_y;
((float*) m_data)[14] += *p_z;
}
// OFFSET: LEGO1 0x100024a0
void MxMatrix::SetTranslation(const float* p_x, const float* p_y, const float* p_z)
{
m_data[12] = *p_x;
m_data[13] = *p_y;
m_data[14] = *p_z;
(*m_data)[3][0] = *p_x;
(*m_data)[3][1] = *p_y;
(*m_data)[3][2] = *p_z;
}
// OFFSET: LEGO1 0x100024d0
void MxMatrix::EqualsDataProduct(const Matrix4& p_a, const Matrix4& p_b)
{
float* cur = (float*) m_data;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
*cur = 0.0f;
for (int k = 0; k < 4; ++k) {
*cur += p_a[row][k] * p_b[k][col];
}
cur++;
}
}
}
// OFFSET: LEGO1 0x10002530
void MxMatrix::EqualsMxProduct(const MxMatrix* p_a, const MxMatrix* p_b)
{
EqualsDataProduct(p_a->m_data, p_b->m_data);
}
// OFFSET: LEGO1 0x100024d0
void MxMatrix::EqualsDataProduct(const float* p_a, const float* p_b)
{
float* cur = m_data;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
*cur = 0.0f;
for (int k = 0; k < 4; ++k) {
*cur += p_a[row * 4 + k] * p_b[k * 4 + col];
}
cur++;
}
}
EqualsDataProduct(*p_a->m_data, *p_b->m_data);
}
// Not close, Ghidra struggles understinging this method so it will have to
@ -132,6 +127,7 @@ void MxMatrix::EqualsDataProduct(const float* p_a, const float* p_b)
// OFFSET: LEGO1 0x10002550 STUB
void MxMatrix::ToQuaternion(MxVector4* p_outQuat)
{
/*
float trace = m_data[0] + m_data[5] + m_data[10];
if (trace > 0) {
trace = sqrt(trace + 1.0);
@ -166,6 +162,7 @@ void MxMatrix::ToQuaternion(MxVector4* p_outQuat)
p_outQuat->GetData()[3] = (m_data[next + 4 * nextNext] - m_data[nextNext + 4 * next]) * traceValue;
p_outQuat->GetData()[next] = (m_data[next + 4 * largest] + m_data[largest + 4 * next]) * traceValue;
p_outQuat->GetData()[nextNext] = (m_data[nextNext + 4 * largest] + m_data[largest + 4 * nextNext]) * traceValue;
*/
}
// No idea what this function is doing and it will be hard to tell until
@ -176,6 +173,12 @@ MxResult MxMatrix::FUN_10002710(const MxVector3* p_vec)
return FAILURE;
}
// OFFSET: LEGO1 0x10002850
void MxMatrix::operator=(const MxMatrix& p_other)
{
EqualsMxMatrix(&p_other);
}
// OFFSET: LEGO1 0x10002860
void MxMatrixData::operator=(const MxMatrixData& p_other)
{

View File

@ -3,21 +3,48 @@
#include "mxvector.h"
/*
* A simple array of four Vector4s that can be indexed into.
*/
class Matrix4 {
public:
float rows[4][4]; // storage is public for easy access
inline Matrix4() {}
/*
Matrix4(const Vector4& x_axis, const Vector4& y_axis, const Vector4& z_axis, const Vector4& position)
{
rows[0] = x_axis;
rows[1] = y_axis;
rows[2] = z_axis;
rows[3] = position;
}
Matrix4(const float m[4][4])
{
rows[0] = m[0];
rows[1] = m[1];
rows[2] = m[2];
rows[3] = m[3];
}
*/
const float* operator[](long i) const { return rows[i]; }
float* operator[](long i) { return rows[i]; }
};
// VTABLE 0x100d4350
// SIZE 0x8
class MxMatrix {
public:
inline MxMatrix(float* p_data) : m_data(p_data) {}
inline MxMatrix(Matrix4& p_data) : m_data(&p_data) {}
// vtable + 0x00
virtual void EqualsMxMatrix(const MxMatrix* p_other);
virtual void EqualsMatrixData(const float* p_matrix);
virtual void SetData(float* p_data);
virtual void AnotherSetData(float* p_data);
virtual void EqualsMatrixData(const Matrix4& p_matrix);
virtual void SetData(Matrix4& p_data);
virtual void AnotherSetData(Matrix4& p_data);
// vtable + 0x10
virtual float* GetData();
virtual const float* GetData() const;
virtual Matrix4* GetData();
virtual const Matrix4* GetData() const;
virtual float* Element(int p_row, int p_col);
virtual const float* Element(int p_row, int p_col) const;
@ -25,44 +52,38 @@ class MxMatrix {
virtual void Clear();
virtual void SetIdentity();
virtual void operator=(const MxMatrix& p_other);
virtual MxMatrix* operator+=(const float* p_matrix);
virtual MxMatrix* operator+=(const Matrix4& p_matrix);
// vtable + 0x30
virtual void TranslateBy(const float* p_x, const float* p_y, const float* p_z);
virtual void SetTranslation(const float* p_x, const float* p_y, const float* p_z);
virtual void EqualsMxProduct(const MxMatrix* p_a, const MxMatrix* p_b);
virtual void EqualsDataProduct(const float* p_a, const float* p_b);
virtual void EqualsDataProduct(const Matrix4& p_a, const Matrix4& p_b);
// vtable + 0x40
virtual void ToQuaternion(MxVector4* p_resultQuat);
virtual MxResult FUN_10002710(const MxVector3* p_vec);
inline float& operator[](size_t idx) { return m_data[idx]; }
inline float& operator[](size_t idx) { return (*m_data)[idx >> 2][idx & 3]; }
private:
float* m_data;
protected:
Matrix4* m_data;
};
// VTABLE 0x100d4300
// SIZE 0x48
class MxMatrixData : public MxMatrix {
public:
inline MxMatrixData() : MxMatrix(e) {}
inline MxMatrixData() : MxMatrix(m) {}
inline MxMatrixData(MxMatrixData& p_other) : MxMatrix(m) { m = *p_other.m_data; }
inline Matrix4& GetMatrix() { return *m_data; }
// No idea why there's another equals. Maybe to some other type like the
// DirectX Retained Mode Matrix type which is also a float* alias?
// vtable + 0x44
virtual void operator=(const MxMatrixData& p_other);
// Alias an easy way to access the translation part of the matrix, because
// various members / other functions benefit from the clarity.
union {
float e[16];
struct {
float _[12];
float x, y, z, w;
};
};
Matrix4 m;
};
#endif // MXMATRIX_H

View File

@ -33,8 +33,14 @@ typedef unsigned int MxULong;
typedef MxS32 MxTime;
typedef MxLong MxResult;
const MxResult SUCCESS = 0;
const MxResult FAILURE = -1;
#ifndef SUCCESS
#define SUCCESS 0
#endif
#ifndef FAILURE
#define FAILURE -1
#endif
typedef MxU8 MxBool;

View File

@ -5,6 +5,54 @@
#include <vec.h>
/*
* A simple array of three floats that can be indexed into.
*/
class Vector3 {
public:
float elements[3]; // storage is public for easy access
Vector3() {}
Vector3(float x, float y, float z)
{
elements[0] = x;
elements[1] = y;
elements[2] = z;
}
Vector3(const float v[3])
{
elements[0] = v[0];
elements[1] = v[1];
elements[2] = v[2];
}
const float& operator[](long i) const { return elements[i]; }
float& operator[](long i) { return elements[i]; }
};
/*
* A simple array of four floats that can be indexed into.
*/
struct Vector4 {
public:
float elements[4]; // storage is public for easy access
inline Vector4() {}
Vector4(float x, float y, float z, float w)
{
elements[0] = x;
elements[1] = y;
elements[2] = z;
elements[3] = w;
}
Vector4(const float v[4])
{
elements[0] = v[0];
elements[1] = v[1];
elements[2] = v[2];
elements[3] = v[3];
}
const float& operator[](long i) const { return elements[i]; }
float& operator[](long i) { return elements[i]; }
};
// VTABLE 0x100d4288
// SIZE 0x8
class MxVector2 {
@ -28,8 +76,8 @@ class MxVector2 {
// vtable + 0x20
virtual void EqualsImpl(float* p_data) = 0;
virtual const float* GetData() const;
virtual float* GetData();
virtual const float* GetData() const;
virtual void Clear() = 0;
// vtable + 0x30

66
LEGO1/orientableroi.cpp Normal file
View File

@ -0,0 +1,66 @@
#include "orientableroi.h"
#include "decomp.h"
DECOMP_SIZE_ASSERT(OrientableROI, 0xdc)
// OFFSET: LEGO1 0x100a5910
void OrientableROI::VTable0x1c()
{
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// OFFSET: LEGO1 0x100a5930
void OrientableROI::SetLocalTransform(const MxMatrix& p_transform)
{
reinterpret_cast<MxMatrix&>(m_local2world) = p_transform;
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// OFFSET: LEGO1 0x100a5960
void OrientableROI::VTable0x24(const MxMatrixData& p_transform)
{
MxMatrixData l_matrix(m_local2world);
m_local2world.EqualsMxProduct(&p_transform, &l_matrix);
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
}
// OFFSET: LEGO1 0x100a59b0
void OrientableROI::UpdateWorldData(const MxMatrixData& p_transform)
{
MxMatrixData l_matrix(m_local2world);
m_local2world.EqualsMxProduct(&l_matrix, &p_transform);
UpdateWorldBoundingVolumes();
UpdateWorldVelocity();
// iterate over comps
if (m_comp)
for (CompoundObject::iterator iter = m_comp->begin(); !(iter == m_comp->end()); iter++) {
ROI* child = *iter;
static_cast<OrientableROI*>(child)->UpdateWorldData(m_local2world);
}
}
// OFFSET: LEGO1 0x100a5a50
void OrientableROI::UpdateWorldVelocity()
{
}
// OFFSET: LEGO1 0x100a5d80
const Vector3& OrientableROI::GetWorldVelocity() const
{
return (Vector3&) *m_world_velocity.GetData();
}
// OFFSET: LEGO1 0x100a5d90
const BoundingBox& OrientableROI::GetWorldBoundingBox() const
{
return m_world_bounding_box;
}
// OFFSET: LEGO1 0x100a5da0
const BoundingSphere& OrientableROI::GetWorldBoundingSphere() const
{
return m_world_bounding_sphere;
}

52
LEGO1/orientableroi.h Normal file
View File

@ -0,0 +1,52 @@
#ifndef ORIENTABLEROI_H
#define ORIENTABLEROI_H
#include "mxmatrix.h"
#include "roi.h"
class OrientableROI : public ROI {
public:
// OFFSET: LEGO1 0x100a4420
OrientableROI()
{
FILLVEC3(m_world_bounding_box.Min(), 888888.8);
FILLVEC3(m_world_bounding_box.Max(), -888888.8);
ZEROVEC3(m_world_bounding_sphere.Center());
m_world_bounding_sphere.Radius() = 0.0;
ZEROVEC3(m_world_velocity);
IDENTMAT4(m_local2world.GetMatrix());
}
// OFFSET: LEGO1 0x100a4630 TEMPLATE
// OrientableROI::`scalar deleting destructor'
virtual const Vector3& GetWorldVelocity() const;
virtual const BoundingBox& GetWorldBoundingBox() const;
virtual const BoundingSphere& GetWorldBoundingSphere() const;
// virtual float* GetWorldPosition() const { return (float*) m_local2world.GetData() + 12; }
// virtual float* GetWorldDirection() const { return (float*) m_local2world.GetData() + 8; }
// virtual float* GetWorldUp() const { return (float*) m_local2world.GetData() + 4; }
protected:
// vtable + 0x14
virtual void VTable0x14() { VTable0x1c(); }
virtual void UpdateWorldBoundingVolumes() = 0;
public:
virtual void OrientableROI::VTable0x1c();
// vtable + 0x20
virtual void OrientableROI::SetLocalTransform(const MxMatrix& p_transform);
virtual void OrientableROI::VTable0x24(const MxMatrixData& p_transform);
virtual void OrientableROI::UpdateWorldData(const MxMatrixData& p_transform);
virtual void OrientableROI::UpdateWorldVelocity();
protected:
char m_unkc;
MxMatrixData m_local2world; // 0x10
BoundingBox m_world_bounding_box; // 0x58
BoundingSphere m_world_bounding_sphere; // 0xa8
MxVector3Data m_world_velocity; // 0xc0
MxU32 m_unkd4;
MxU32 m_unkd8;
};
#endif // ORIENTABLEROI_H

105
LEGO1/roi.h Normal file
View File

@ -0,0 +1,105 @@
#ifndef ROI_H
#define ROI_H
#include "compat.h"
#include "lodlist.h"
#include "mxstl.h"
#include "mxvector.h"
#include "realtime/realtime.h"
/*
* A simple bounding box object with Min and Max accessor methods.
*/
class BoundingBox {
public:
const MxVector3Data& Min() const { return min; }
MxVector3Data& Min() { return min; }
const MxVector3Data& Max() const { return max; }
MxVector3Data& Max() { return max; }
private:
MxVector3Data min;
MxVector3Data max;
MxVector3Data m_unk28;
MxVector3Data m_unk3c;
};
/*
* A simple bounding sphere object with center and radius accessor methods.
*/
class BoundingSphere {
public:
const MxVector3Data& Center() const { return center; }
MxVector3Data& Center() { return center; }
const float& Radius() const { return radius; }
float& Radius() { return radius; }
private:
MxVector3Data center;
float radius;
};
/*
* Abstract base class representing a single LOD version of
* a geometric object.
*/
class LODObject {
public:
// LODObject();
virtual ~LODObject() {}
virtual float Cost(float pixels_covered) const = 0;
virtual float AveragePolyArea() const = 0;
virtual int NVerts() const = 0;
};
/*
* A CompoundObject is simply a set of ROI objects which
* all together represent a single object with sub-parts.
*/
class ROI;
// typedef std::set<ROI*, std::less<const ROI*> > CompoundObject;
typedef list<ROI*> CompoundObject;
/*
* A ROIList is a list of ROI objects.
*/
typedef vector<const ROI*> ROIList;
/*
* A simple list of integers.
* Returned by RealtimeView::SelectLODs as indices into an ROIList.
*/
typedef vector<int> IntList;
class ROI {
public:
ROI()
{
m_comp = 0;
m_lods = 0;
}
virtual ~ROI()
{
// if derived class set the comp and lods, it should delete them
assert(!m_comp);
assert(!m_lods);
}
virtual float IntrinsicImportance() const = 0;
virtual const Vector3& GetWorldVelocity() const = 0;
virtual const BoundingBox& GetWorldBoundingBox() const = 0;
virtual const BoundingSphere& GetWorldBoundingSphere() const = 0;
const LODListBase* GetLODs() const { return m_lods; }
const LODObject* GetLOD(int i) const
{
assert(m_lods);
return (*m_lods)[i];
}
int GetLODCount() const { return m_lods ? m_lods->Size() : 0; }
const CompoundObject* GetComp() const { return m_comp; }
protected:
CompoundObject* m_comp;
LODListBase* m_lods;
};
#endif // ROI_H

364
LEGO1/tgl.h Normal file
View File

@ -0,0 +1,364 @@
#ifndef TGL_H
#define TGL_H
#ifdef _WIN32
#define NOMINMAX // to avoid conflict with STL
#include <d3d.h>
#include <ddraw.h>
#include <windows.h> // HWND
#endif /* _WIN32 */
#include "mxmatrix.h"
#include "tglVector.h"
namespace Tgl
{
// ???
enum ColorModel {
Ramp,
RGB
};
// ???
enum ShadingModel {
Wireframe,
UnlitFlat,
Flat,
Gouraud,
Phong
};
// ?????
enum LightType {
Ambient,
Point,
Spot,
Directional,
ParallelPoint
};
// ???
enum ProjectionType {
Perspective,
Orthographic
};
enum TextureMappingMode {
Linear,
PerspectiveCorrect
};
struct PaletteEntry {
unsigned char m_red;
unsigned char m_green;
unsigned char m_blue;
};
#ifdef _WIN32
struct DeviceDirectDrawCreateData {
const GUID* m_driverGUID;
HWND m_hWnd; // ??? derive from m_pDirectDraw
IDirectDraw* m_pDirectDraw;
IDirectDrawSurface* m_pFrontBuffer; // ??? derive from m_pDirectDraw
IDirectDrawSurface* m_pBackBuffer;
IDirectDrawPalette* m_pPalette; // ??? derive from m_pDirectDraw
int m_isFullScreen; // ??? derive from m_pDirectDraw
};
struct DeviceDirect3DCreateData {
IDirect3D* m_pDirect3D;
IDirect3DDevice* m_pDirect3DDevice;
};
#else
struct DeviceDirectDrawCreateData {};
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Result (return value type)
enum Result {
Error = 0,
Success = 1
};
inline int Succeeded(Result result)
{
return (result == Success);
}
//////////////////////////////////////////////////////////////////////////////
//
// Forward declarations
class Renderer;
class Object;
class Device;
class View;
class Light;
class Camera;
class Group;
class Mesh;
class Texture;
//////////////////////////////////////////////////////////////////////////////
//
// Object
class Object {
public:
virtual ~Object() {}
// returns pointer to implementation data
virtual void* ImplementationDataPtr() = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Renderer
// ??? for now until we figured out how an app should pass the Renderer around
Renderer* CreateRenderer();
class Renderer : public Object {
public:
virtual Device* CreateDevice(const DeviceDirectDrawCreateData&) = 0;
virtual Device* CreateDevice(const DeviceDirect3DCreateData&) = 0;
virtual View* CreateView(
const Device*,
const Camera*,
unsigned long x,
unsigned long y,
unsigned long width,
unsigned long height
) = 0;
virtual Camera* CreateCamera() = 0;
virtual Light* CreateLight(LightType, double r, double g, double b) = 0;
virtual Group* CreateGroup(const Group* pParent = 0) = 0;
// pTextureCoordinates is pointer to array of vertexCount elements
// (each element being two floats), or NULL
// pFaceData is faceCount tuples, each of format
// [vertex1index, ... vertexNindex], where N = vertexPerFaceCount
virtual Mesh* CreateMesh(
unsigned long vertexCount,
const float (*pVertices)[3],
const float (*pTextureCoordinates)[2],
unsigned long faceCount,
unsigned long vertexPerFaceCount,
unsigned long* pFaceData
) = 0;
// pTextureCoordinates is pointer to array of vertexCount elements
// (each element being two floats), or NULL
// pFaceData is:
// [face1VertexCount face1Vertex1index, ... face1VertexMindex
// face2VertexCount face2Vertex1index, ... face2VertexNindex
// ...
// 0]
virtual Mesh* CreateMesh(
unsigned long vertexCount,
const float (*pVertices)[3],
const float (*pTextureCoordinates)[2],
unsigned long* pFaceData
) = 0;
virtual Texture* CreateTexture(
int width,
int height,
int bitsPerTexel,
const void* pTexels,
int pTexelsArePersistent,
int paletteEntryCount,
const PaletteEntry* pEntries
) = 0;
virtual Texture* CreateTexture() = 0;
virtual Result SetTextureDefaultShadeCount(unsigned long) = 0;
virtual Result SetTextureDefaultColorCount(unsigned long) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Device
class Device : public Object {
public:
virtual unsigned long GetWidth() = 0;
virtual unsigned long GetHeight() = 0;
virtual Result SetColorModel(ColorModel) = 0;
virtual Result SetShadingModel(ShadingModel) = 0;
virtual Result SetShadeCount(unsigned long) = 0;
virtual Result SetDither(int) = 0;
virtual Result Update() = 0;
// ??? should this be handled by app ???
// ??? this needs to be called when the window on which the device is ...
// is being activated
virtual void HandleActivate(int bActivate) = 0;
// ??? this needs to be called when the window on which this device is based
// needs to be repainted
virtual void HandlePaint(void*) = 0;
#ifdef _DEBUG
virtual unsigned long GetDrawnTriangleCount() = 0;
#endif
};
//////////////////////////////////////////////////////////////////////////////
//
// View
class View : public Object {
public:
virtual Result Add(const Light*) = 0;
virtual Result Remove(const Light*) = 0;
virtual Result SetCamera(const Camera*) = 0;
virtual Result SetProjection(ProjectionType) = 0;
virtual Result SetFrustrum(double frontClippingDistance, double backClippingDistance, double degrees) = 0;
virtual Result SetBackgroundColor(double r, double g, double b) = 0;
virtual Result Clear() = 0;
virtual Result Render(const Group*) = 0;
// ??? needed for fine grain control when using DirectDraw/D3D ???
virtual Result ForceUpdate(unsigned long x, unsigned long y, unsigned long width, unsigned long height) = 0;
// ??? for now: used by Mesh Cost calculation
virtual Result TransformWorldToScreen(const double world[3], double screen[4]) = 0;
// Pick():
// x, y:
// view coordinates
//
// ppGroupsToPickFrom:
// array of (Group*) in any order
// Groups to pick from
//
// groupsToPickFromCount:
// size of ppGroupsToPickFrom
//
// rppPickedGroups:
// output parameter
// array of (Group*) representing a Group hierarchy
// top-down order (element 0 is root/scene)
// caller must deallocate array
// ref count of each element (Group*) has not been increased
// an element will be 0, if a corresponding Group was not found in ppGroupsToPickFrom
//
// rPickedGroupCount:
// output parameter
// size of rppPickedGroups
virtual Result Pick(
unsigned long x,
unsigned long y,
const Group** ppGroupsToPickFrom,
int groupsToPickFromCount,
const Group**& rppPickedGroups,
int& rPickedGroupCount
) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Camera
class Camera : public Object {
public:
#if 0
virtual Result SetPosition(const double[3]) = 0;
virtual Result SetOrientation(const double direction[3],
const double up[3]) = 0;
#endif
virtual Result SetTransformation(const FloatMatrix4&) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Light
class Light : public Object {
public:
#if 0
virtual Result SetPosition(const double[3]) = 0;
virtual Result SetOrientation(const double direction[3],
const double up[3]) = 0;
#endif
virtual Result SetTransformation(const FloatMatrix4&) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Group
class Group : public Object {
public:
#if 0
virtual Result SetPosition(const double[3]) = 0;
virtual Result SetOrientation(const double direction[3],
const double up[3]) = 0;
#endif
virtual Result SetTransformation(const Matrix4&) = 0;
// ??? not yet fully implemented
virtual Result SetColor(double r, double g, double b) = 0;
virtual Result SetTexture(const Texture*) = 0;
virtual Result Add(const Group*) = 0;
virtual Result Add(const Mesh*) = 0;
virtual Result Remove(const Group*) = 0;
virtual Result Remove(const Mesh*) = 0;
virtual Result RemoveAll() = 0;
// ??? for now: used by Mesh Cost calculation
virtual Result TransformLocalToWorld(const double local[3], double world[3]) = 0;
};
//////////////////////////////////////////////////////////////////////////////
//
// Mesh
class Mesh : public Object {
public:
// ??? also on Group
virtual Result SetColor(double r, double g, double b) = 0;
virtual Result SetTexture(const Texture*) = 0;
virtual Result SetTextureMappingMode(TextureMappingMode) = 0;
virtual Result SetShadingModel(ShadingModel) = 0;
#ifdef _DEBUG
virtual Result GetBoundingBox(float min[3], float max[3]) = 0;
virtual unsigned long GetFaceCount() = 0;
virtual unsigned long GetVertexCount() = 0;
#endif
};
//////////////////////////////////////////////////////////////////////////////
//
// Texture
class Texture : public Object {
public:
virtual Result SetTexels(
int width,
int height,
int bitsPerTexel,
const void* pTexels,
int pTexelsArePersistent
) = 0;
virtual Result SetPalette(int entryCount, const PaletteEntry* pEntries) = 0;
};
//////////////////////////////////////////////////////////////////////////////
} // namespace Tgl
#endif // TGL_H

277
LEGO1/tglvector.h Normal file
View File

@ -0,0 +1,277 @@
#ifndef TGLVECTOR_H
#define TGLVECTOR_H
#include "math.h" // ??? sin() in RotateAroundY()
#include <stddef.h> // offsetof()
namespace Tgl
{
namespace Constant
{
const float Pi = 3.14159265358979323846;
};
inline float DegreesToRadians(float degrees)
{
return Constant::Pi * (degrees / 180.0);
}
inline float RadiansToDegrees(float radians)
{
return (radians / Constant::Pi) * 180.0;
}
//////////////////////////////////////////////////////////////////////////////
//
// Array<T, N>
template <class T, int N>
class Array {
public:
Array() {}
Array(const Array& rArray) { *this = rArray; }
~Array() {}
const T& operator[](int i) const { return m_elements[i]; };
T& operator[](int i) { return m_elements[i]; };
Array<T, N>& operator=(const Array<T, N>&);
void operator+=(const Array<T, N>&);
protected:
T m_elements[N];
};
//////////////////////////////////////////////////////////////////////////////
//
// Array<T, N> implementation
template <class T, int N>
inline Array<T, N>& Array<T, N>::operator=(const Array<T, N>& rArray)
{
int i;
for (i = 0; i < N; i++) {
m_elements[i] = rArray.m_elements[i];
}
return *this;
}
template <class T, int N>
inline void Array<T, N>::operator+=(const Array<T, N>& rArray)
{
int i;
for (i = 0; i < N; i++) {
m_elements[i] += rArray.m_elements[i];
}
}
//////////////////////////////////////////////////////////////////////////////
//
// FloatMatrix4
class FloatMatrix4 : public Array<Array<float, 4>, 4> {
public:
FloatMatrix4() {}
FloatMatrix4(const FloatMatrix4& rMatrix) { *this = rMatrix; }
FloatMatrix4(const FloatMatrix4&, const FloatMatrix4&);
void operator*=(const FloatMatrix4&);
};
//////////////////////////////////////////////////////////////////////////////
//
// FloatMatrix4 implementation
inline FloatMatrix4::FloatMatrix4(const FloatMatrix4& rMatrix1, const FloatMatrix4& rMatrix2)
{
for (int row = 0; row < 4; row++) {
for (int column = 0; column < 4; column++) {
float element = 0;
for (int i = 0; i < 4; i++) {
element += rMatrix1[row][i] * rMatrix2[i][column];
}
m_elements[row][column] = element;
}
}
}
inline void FloatMatrix4::operator*=(const FloatMatrix4& rMatrix)
{
FloatMatrix4 temp(*this, rMatrix);
// *this = FloatMatrix4(*this, rMatrix);
*this = temp;
}
//////////////////////////////////////////////////////////////////////////////
//
// Transformation matrices
class Translation : public FloatMatrix4 {
public:
Translation(const float[3]);
Translation(float x, float y, float z);
protected:
void Init(float x, float y, float z);
};
class Scale : public FloatMatrix4 {
public:
Scale(const float[3]);
Scale(float x, float y, float z);
Scale(float);
protected:
void Init(float x, float y, float z);
};
class RotationX : public FloatMatrix4 {
public:
RotationX(float radians);
};
class RotationY : public FloatMatrix4 {
public:
RotationY(float radians);
};
//////////////////////////////////////////////////////////////////////////////
//
// Transformation matrices implementation
inline Translation::Translation(const float vector[3])
{
Init(vector[0], vector[1], vector[2]);
}
inline Translation::Translation(float x, float y, float z)
{
Init(x, y, z);
}
inline void Translation::Init(float x, float y, float z)
{
m_elements[0][0] = 1;
m_elements[0][1] = 0;
m_elements[0][2] = 0;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = 1;
m_elements[1][2] = 0;
m_elements[1][3] = 0;
m_elements[2][0] = 0;
m_elements[2][1] = 0;
m_elements[2][2] = 1;
m_elements[2][3] = 0;
m_elements[3][0] = x;
m_elements[3][1] = y;
m_elements[3][2] = z;
m_elements[3][3] = 1;
}
inline Scale::Scale(const float vector[3])
{
Init(vector[0], vector[1], vector[2]);
}
inline Scale::Scale(float x, float y, float z)
{
Init(x, y, z);
}
inline Scale::Scale(float scale)
{
Init(scale, scale, scale);
}
inline void Scale::Init(float x, float y, float z)
{
m_elements[0][0] = x;
m_elements[0][1] = 0;
m_elements[0][2] = 0;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = y;
m_elements[1][2] = 0;
m_elements[1][3] = 0;
m_elements[2][0] = 0;
m_elements[2][1] = 0;
m_elements[2][2] = z;
m_elements[2][3] = 0;
m_elements[3][0] = 0;
m_elements[3][1] = 0;
m_elements[3][2] = 0;
m_elements[3][3] = 1;
}
inline RotationX::RotationX(float radians)
{
float cosRadians = cos(radians);
float sinRadians = sin(radians);
m_elements[0][0] = 1;
m_elements[0][1] = 0;
m_elements[0][2] = 0;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = cosRadians;
m_elements[1][2] = -sinRadians;
m_elements[1][3] = 0;
m_elements[2][0] = 0;
m_elements[2][1] = sinRadians;
m_elements[2][2] = cosRadians;
m_elements[2][3] = 0;
m_elements[3][0] = 0;
m_elements[3][1] = 0;
m_elements[3][2] = 0;
m_elements[3][3] = 1;
}
inline RotationY::RotationY(float radians)
{
float cosRadians = cos(radians);
float sinRadians = sin(radians);
m_elements[0][0] = cosRadians;
m_elements[0][1] = 0;
m_elements[0][2] = sinRadians;
m_elements[0][3] = 0;
m_elements[1][0] = 0;
m_elements[1][1] = 1;
m_elements[1][2] = 0;
m_elements[1][3] = 0;
m_elements[2][0] = -sinRadians;
m_elements[2][1] = 0;
m_elements[2][2] = cosRadians;
m_elements[2][3] = 0;
m_elements[3][0] = 0;
m_elements[3][1] = 0;
m_elements[3][2] = 0;
m_elements[3][3] = 1;
}
//////////////////////////////////////////////////////////////////////////////
} // namespace Tgl
#endif // TLGVECTOR_H

116
LEGO1/viewlodlist.h Normal file
View File

@ -0,0 +1,116 @@
#ifndef VIEWLODLIST_H
#define VIEWLODLIST_H
#include "LODList.h"
#include "assert.h"
#include "compat.h"
#include "mxtypes.h"
#pragma warning(disable : 4786)
class ViewLOD;
class ViewLODListManager;
//////////////////////////////////////////////////////////////////////////////
// ViewLODList
//
// An ViewLODList is an LODList that is shared among instances of the "same ROI".
//
// ViewLODLists are managed (created and destroyed) by ViewLODListManager.
//
class ViewLODList : public LODList<ViewLOD> {
friend ViewLODListManager;
protected:
ViewLODList(size_t capacity);
~ViewLODList();
public:
inline int AddRef();
inline int Release();
#ifdef _DEBUG
void Dump(void (*pTracer)(const char*, ...)) const;
#endif
private:
int m_refCount;
ViewLODListManager* m_owner;
};
//////////////////////////////////////////////////////////////////////////////
//
// ??? for now, until we have symbol management
typedef const char* ROIName;
struct ROINameComparator {
MxBool operator()(const ROIName& rName1, const ROIName& rName2) const
{
return strcmp((const char*) rName1, (const char*) rName2) > 0;
}
};
//////////////////////////////////////////////////////////////////////////////
//
// ViewLODListManager
//
// ViewLODListManager manages creation and sharing of ViewLODLists.
// It stores ViewLODLists under a name, the name of the ROI where
// the ViewLODList belongs.
class ViewLODListManager {
typedef map<ROIName, ViewLODList*, ROINameComparator> ViewLODListMap;
public:
ViewLODListManager();
virtual ~ViewLODListManager();
// ??? should LODList be const
// creates an LODList with room for lodCount LODs for a named ROI
// returned LODList has a refCount of 1, i.e. caller must call Release()
// when it no longer holds on to the list
ViewLODList* Create(const ROIName&, int lodCount);
// returns an LODList for a named ROI
// returned LODList's refCount is increased, i.e. caller must call Release()
// when it no longer holds on to the list
ViewLODList* Lookup(const ROIName&) const;
void Destroy(ViewLODList* lodList);
#ifdef _DEBUG
void Dump(void (*pTracer)(const char*, ...)) const;
#endif
private:
ViewLODListMap m_map;
};
//////////////////////////////////////////////////////////////////////////////
//
// ViewLODList implementation
inline ViewLODList::ViewLODList(size_t capacity) : LODList<ViewLOD>(capacity), m_refCount(0)
{
}
inline ViewLODList::~ViewLODList()
{
assert(m_refCount == 0);
}
inline int ViewLODList::AddRef()
{
return ++m_refCount;
}
inline int ViewLODList::Release()
{
assert(m_refCount > 0);
if (!--m_refCount)
m_owner->Destroy(this);
return m_refCount;
}
#endif // VIEWLODLIST_H

45
LEGO1/viewroi.cpp Normal file
View File

@ -0,0 +1,45 @@
#include "viewroi.h"
#include "decomp.h"
DECOMP_SIZE_ASSERT(ViewROI, 0xe0)
// OFFSET: LEGO1 0x100a9eb0
float ViewROI::IntrinsicImportance() const
{
return .5;
} // for now
// OFFSET: LEGO1 0x100a9ec0
const Tgl::Group* ViewROI::GetGeometry() const
{
return geometry;
}
// OFFSET: LEGO1 0x100a9ed0
Tgl::Group* ViewROI::GetGeometry()
{
return geometry;
}
// OFFSET: LEGO1 0x100a9ee0
void ViewROI::UpdateWorldData(const MxMatrixData& parent2world)
{
OrientableROI::UpdateWorldData(parent2world);
if (geometry) {
// Tgl::FloatMatrix4 tgl_mat;
Matrix4 mat;
SETMAT4(mat, m_local2world.GetMatrix());
Tgl::Result result = geometry->SetTransformation(mat);
// assert(Tgl::Succeeded(result));
}
}
// OFFSET: LEGO1 0x100aa250 TEMPLATE
// ViewROI::`scalar deleting destructor'
inline ViewROI::~ViewROI()
{
// SetLODList() will decrease refCount of LODList
SetLODList(0);
delete geometry;
}

47
LEGO1/viewroi.h Normal file
View File

@ -0,0 +1,47 @@
#ifndef VIEWROI_H
#define VIEWROI_H
#include "orientableroi.h"
#include "tgl.h"
#include "viewlodlist.h"
/*
ViewROI objects represent view objects, collections of view objects,
etc. Basically, anything which can be placed in a scene and manipilated
by the view manager is a ViewROI.
*/
class ViewROI : public OrientableROI {
public:
inline ViewROI(Tgl::Renderer* pRenderer, ViewLODList* lodList)
{
SetLODList(lodList);
geometry = pRenderer->CreateGroup();
}
inline ~ViewROI();
inline void SetLODList(ViewLODList* lodList)
{
// ??? inherently type unsafe - kind of... because, now, ROI
// does not expose SetLODs() ...
// solution: create pure virtual LODListBase* ROI::GetLODList()
// and let derived ROI classes hold the LODList
if (m_lods) {
reinterpret_cast<ViewLODList*>(m_lods)->Release();
}
m_lods = lodList;
if (m_lods) {
reinterpret_cast<ViewLODList*>(m_lods)->AddRef();
}
}
virtual float IntrinsicImportance() const;
virtual Tgl::Group* GetGeometry();
virtual const Tgl::Group* GetGeometry() const;
protected:
Tgl::Group* geometry;
void UpdateWorldData(const MxMatrixData& parent2world);
};
#endif // VIEWROI_H