isle-portable/miniwin/src/d3drm/backends/opengles3/renderer.cpp
2025-07-24 00:09:43 +02:00

885 lines
26 KiB
C++

#include "d3drmrenderer_opengles3.h"
#include "meshutils.h"
#include <GLES2/gl2ext.h>
#include <GLES3/gl3.h>
#include <SDL3/SDL.h>
#include <algorithm>
#include <string>
static GLuint CompileShader(GLenum type, const char* source)
{
GLuint shader = glCreateShader(type);
glShaderSource(shader, 1, &source, nullptr);
glCompileShader(shader);
GLint success;
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (!success) {
GLint logLength = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &logLength);
if (logLength > 0) {
std::vector<char> log(logLength);
glGetShaderInfoLog(shader, logLength, nullptr, log.data());
SDL_Log("Shader compile error: %s", log.data());
}
else {
SDL_Log("CompileShader (%s)", SDL_GetError());
}
glDeleteShader(shader);
return 0;
}
return shader;
}
struct SceneLightGLES3 {
float color[4];
float position[4];
float direction[4];
};
Direct3DRMRenderer* OpenGLES3Renderer::Create(DWORD width, DWORD height, DWORD msaaSamples, float anisotropic)
{
// We have to reset the attributes here after having enumerated the
// OpenGL ES 2.0 renderer, or else SDL gets very confused by SDL_GL_DEPTH_SIZE
// call below when on an EGL-based backend, and crashes with EGL_BAD_MATCH.
SDL_GL_ResetAttributes();
// But ResetAttributes resets it to 16.
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_ES);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0);
if (!DDWindow) {
SDL_Log("No window handler");
return nullptr;
}
SDL_GLContext context = SDL_GL_CreateContext(DDWindow);
if (!context) {
SDL_Log("SDL_GL_CreateContext: %s", SDL_GetError());
return nullptr;
}
if (!SDL_GL_MakeCurrent(DDWindow, context)) {
SDL_GL_DestroyContext(context);
return nullptr;
}
glDepthFunc(GL_LEQUAL);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CW);
const char* vertexShaderSource = R"(#version 300 es
precision highp float;
in vec3 a_position;
in vec3 a_normal;
in vec2 a_texCoord;
uniform mat4 u_modelViewMatrix;
uniform mat3 u_normalMatrix;
uniform mat4 u_projectionMatrix;
out vec3 v_viewPos;
out vec3 v_normal;
out vec2 v_texCoord;
void main() {
vec4 viewPos = u_modelViewMatrix * vec4(a_position, 1.0);
gl_Position = u_projectionMatrix * viewPos;
v_viewPos = viewPos.xyz;
v_normal = normalize(u_normalMatrix * a_normal);
v_texCoord = a_texCoord;
}
)";
const char* fragmentShaderSource = R"(#version 300 es
precision mediump float;
struct SceneLight {
vec4 color;
vec4 position;
vec4 direction;
};
uniform SceneLight u_lights[3];
uniform int u_lightCount;
in vec3 v_viewPos;
in vec3 v_normal;
in vec2 v_texCoord;
uniform float u_shininess;
uniform vec4 u_color;
uniform bool u_useTexture;
uniform sampler2D u_texture;
out vec4 fragColor;
void main() {
vec3 diffuse = vec3(0.0);
vec3 specular = vec3(0.0);
for (int i = 0; i < u_lightCount; ++i) {
vec3 lightColor = u_lights[i].color.rgb;
if (u_lights[i].position.w == 0.0 && u_lights[i].direction.w == 0.0) {
diffuse += lightColor;
continue;
}
vec3 lightVec;
if (u_lights[i].direction.w == 1.0) {
lightVec = -normalize(u_lights[i].direction.xyz);
}
else {
lightVec = u_lights[i].position.xyz - v_viewPos;
}
lightVec = normalize(lightVec);
float dotNL = max(dot(v_normal, lightVec), 0.0);
if (dotNL > 0.0) {
// Diffuse contribution
diffuse += dotNL * lightColor;
// Specular
if (u_shininess > 0.0 && u_lights[i].direction.w == 1.0) {
vec3 viewVec = normalize(-v_viewPos);
vec3 H = normalize(lightVec + viewVec);
float dotNH = max(dot(v_normal, H), 0.0);
float spec = pow(dotNH, u_shininess);
specular += spec * lightColor;
}
}
}
vec4 finalColor = u_color;
finalColor.rgb = clamp(diffuse * u_color.rgb + specular, 0.0, 1.0);
if (u_useTexture) {
vec4 texel = texture(u_texture, v_texCoord);
finalColor.rgb = clamp(texel.rgb * finalColor.rgb, 0.0, 1.0);
finalColor.a = texel.a;
}
fragColor = finalColor;
}
)";
GLuint vs = CompileShader(GL_VERTEX_SHADER, vertexShaderSource);
GLuint fs = CompileShader(GL_FRAGMENT_SHADER, fragmentShaderSource);
GLuint shaderProgram = glCreateProgram();
glAttachShader(shaderProgram, vs);
glAttachShader(shaderProgram, fs);
glBindAttribLocation(shaderProgram, 0, "a_position");
glBindAttribLocation(shaderProgram, 1, "a_normal");
glBindAttribLocation(shaderProgram, 2, "a_texCoord");
glLinkProgram(shaderProgram);
glDeleteShader(vs);
glDeleteShader(fs);
return new OpenGLES3Renderer(width, height, msaaSamples, anisotropic, context, shaderProgram);
}
GLES3MeshCacheEntry OpenGLES3Renderer::GLES3UploadMesh(const MeshGroup& meshGroup, bool forceUV)
{
GLES3MeshCacheEntry cache{&meshGroup, meshGroup.version};
cache.flat = meshGroup.quality == D3DRMRENDER_FLAT || meshGroup.quality == D3DRMRENDER_UNLITFLAT;
std::vector<D3DRMVERTEX> vertices;
if (cache.flat) {
FlattenSurfaces(
meshGroup.vertices.data(),
meshGroup.vertices.size(),
meshGroup.indices.data(),
meshGroup.indices.size(),
meshGroup.texture != nullptr || forceUV,
vertices,
cache.indices
);
}
else {
vertices = meshGroup.vertices;
cache.indices.resize(meshGroup.indices.size());
std::transform(meshGroup.indices.begin(), meshGroup.indices.end(), cache.indices.begin(), [](DWORD index) {
return static_cast<uint16_t>(index);
});
}
std::vector<TexCoord> texcoords;
if (meshGroup.texture || forceUV) {
texcoords.resize(vertices.size());
std::transform(vertices.begin(), vertices.end(), texcoords.begin(), [](const D3DRMVERTEX& v) {
return v.texCoord;
});
}
std::vector<D3DVECTOR> positions(vertices.size());
std::transform(vertices.begin(), vertices.end(), positions.begin(), [](const D3DRMVERTEX& v) {
return v.position;
});
std::vector<D3DVECTOR> normals(vertices.size());
std::transform(vertices.begin(), vertices.end(), normals.begin(), [](const D3DRMVERTEX& v) { return v.normal; });
glGenVertexArrays(1, &cache.vao);
glBindVertexArray(cache.vao);
glGenBuffers(1, &cache.vboPositions);
glBindBuffer(GL_ARRAY_BUFFER, cache.vboPositions);
glBufferData(GL_ARRAY_BUFFER, positions.size() * sizeof(D3DVECTOR), positions.data(), GL_STATIC_DRAW);
glEnableVertexAttribArray(m_posLoc);
glVertexAttribPointer(m_posLoc, 3, GL_FLOAT, GL_FALSE, 0, nullptr);
glGenBuffers(1, &cache.vboNormals);
glBindBuffer(GL_ARRAY_BUFFER, cache.vboNormals);
glBufferData(GL_ARRAY_BUFFER, normals.size() * sizeof(D3DVECTOR), normals.data(), GL_STATIC_DRAW);
glEnableVertexAttribArray(m_normLoc);
glVertexAttribPointer(m_normLoc, 3, GL_FLOAT, GL_FALSE, 0, nullptr);
if (meshGroup.texture || forceUV) {
glGenBuffers(1, &cache.vboTexcoords);
glBindBuffer(GL_ARRAY_BUFFER, cache.vboTexcoords);
glBufferData(GL_ARRAY_BUFFER, texcoords.size() * sizeof(TexCoord), texcoords.data(), GL_STATIC_DRAW);
glEnableVertexAttribArray(m_texLoc);
glVertexAttribPointer(m_texLoc, 2, GL_FLOAT, GL_FALSE, 0, nullptr);
}
glGenBuffers(1, &cache.ibo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cache.ibo);
glBufferData(
GL_ELEMENT_ARRAY_BUFFER,
cache.indices.size() * sizeof(cache.indices[0]),
cache.indices.data(),
GL_STATIC_DRAW
);
glBindVertexArray(0);
return cache;
}
bool OpenGLES3Renderer::UploadTexture(SDL_Surface* source, GLuint& outTexId, bool isUI)
{
SDL_Surface* surf = source;
if (source->format != SDL_PIXELFORMAT_RGBA32) {
surf = SDL_ConvertSurface(source, SDL_PIXELFORMAT_RGBA32);
if (!surf) {
return false;
}
}
glGenTextures(1, &outTexId);
glBindTexture(GL_TEXTURE_2D, outTexId);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, surf->w, surf->h, 0, GL_RGBA, GL_UNSIGNED_BYTE, surf->pixels);
if (isUI) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
}
else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (m_anisotropic > 1.0f) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, m_anisotropic);
}
glGenerateMipmap(GL_TEXTURE_2D);
}
if (surf != source) {
SDL_DestroySurface(surf);
}
return true;
}
OpenGLES3Renderer::OpenGLES3Renderer(
DWORD width,
DWORD height,
DWORD msaaSamples,
float anisotropic,
SDL_GLContext context,
GLuint shaderProgram
)
: m_context(context), m_shaderProgram(shaderProgram), m_msaa(msaaSamples), m_anisotropic(anisotropic)
{
glGenFramebuffers(1, &m_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
GLint maxSamples;
glGetIntegerv(GL_MAX_SAMPLES, &maxSamples);
if (m_msaa > maxSamples) {
m_msaa = maxSamples;
}
SDL_Log(
"MSAA is %s. Requested samples: %d, active samples: %d, max samples: %d",
m_msaa > 1 ? "on" : "off",
msaaSamples,
m_msaa,
maxSamples
);
if (m_msaa > 1) {
glGenFramebuffers(1, &m_resolveFBO);
}
bool anisoAvailable = SDL_GL_ExtensionSupported("GL_EXT_texture_filter_anisotropic");
GLfloat maxAniso = 0.0f;
if (anisoAvailable) {
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAniso);
}
if (m_anisotropic > maxAniso) {
m_anisotropic = maxAniso;
}
SDL_Log(
"Anisotropic is %s. Requested: %f, active: %f, max aniso: %f",
m_anisotropic > 1.0f ? "on" : "off",
anisotropic,
m_anisotropic,
maxAniso
);
m_virtualWidth = width;
m_virtualHeight = height;
ViewportTransform viewportTransform = {1.0f, 0.0f, 0.0f};
Resize(width, height, viewportTransform);
SDL_Surface* dummySurface = SDL_CreateSurface(1, 1, SDL_PIXELFORMAT_RGBA32);
if (!dummySurface) {
SDL_Log("Failed to create surface: %s", SDL_GetError());
return;
}
if (!SDL_LockSurface(dummySurface)) {
SDL_Log("Failed to lock surface: %s", SDL_GetError());
SDL_DestroySurface(dummySurface);
return;
}
((Uint32*) dummySurface->pixels)[0] = 0xFFFFFFFF;
SDL_UnlockSurface(dummySurface);
UploadTexture(dummySurface, m_dummyTexture, false);
if (!m_dummyTexture) {
SDL_DestroySurface(dummySurface);
SDL_Log("Failed to create surface: %s", SDL_GetError());
return;
}
SDL_DestroySurface(dummySurface);
m_posLoc = glGetAttribLocation(m_shaderProgram, "a_position");
m_normLoc = glGetAttribLocation(m_shaderProgram, "a_normal");
m_texLoc = glGetAttribLocation(m_shaderProgram, "a_texCoord");
m_colorLoc = glGetUniformLocation(m_shaderProgram, "u_color");
m_shinLoc = glGetUniformLocation(m_shaderProgram, "u_shininess");
m_lightCountLoc = glGetUniformLocation(m_shaderProgram, "u_lightCount");
m_useTextureLoc = glGetUniformLocation(m_shaderProgram, "u_useTexture");
m_textureLoc = glGetUniformLocation(m_shaderProgram, "u_texture");
for (int i = 0; i < 3; ++i) {
std::string base = "u_lights[" + std::to_string(i) + "]";
u_lightLocs[i][0] = glGetUniformLocation(m_shaderProgram, (base + ".color").c_str());
u_lightLocs[i][1] = glGetUniformLocation(m_shaderProgram, (base + ".position").c_str());
u_lightLocs[i][2] = glGetUniformLocation(m_shaderProgram, (base + ".direction").c_str());
}
m_modelViewMatrixLoc = glGetUniformLocation(m_shaderProgram, "u_modelViewMatrix");
m_normalMatrixLoc = glGetUniformLocation(m_shaderProgram, "u_normalMatrix");
m_projectionMatrixLoc = glGetUniformLocation(m_shaderProgram, "u_projectionMatrix");
m_uiMesh.vertices = {
{{0.0f, 0.0f, 0.0f}, {0, 0, -1}, {0.0f, 0.0f}},
{{1.0f, 0.0f, 0.0f}, {0, 0, -1}, {1.0f, 0.0f}},
{{1.0f, 1.0f, 0.0f}, {0, 0, -1}, {1.0f, 1.0f}},
{{0.0f, 1.0f, 0.0f}, {0, 0, -1}, {0.0f, 1.0f}}
};
m_uiMesh.indices = {0, 1, 2, 0, 2, 3};
m_uiMeshCache = GLES3UploadMesh(m_uiMesh, true);
glUseProgram(m_shaderProgram);
}
OpenGLES3Renderer::~OpenGLES3Renderer()
{
SDL_DestroySurface(m_renderedImage);
glDeleteTextures(1, &m_dummyTexture);
glDeleteProgram(m_shaderProgram);
glDeleteRenderbuffers(1, &m_colorTarget);
glDeleteRenderbuffers(1, &m_depthTarget);
glDeleteFramebuffers(1, &m_fbo);
if (m_msaa > 1) {
glDeleteRenderbuffers(1, &m_resolveColor);
glDeleteFramebuffers(1, &m_resolveFBO);
}
SDL_GL_DestroyContext(m_context);
}
void OpenGLES3Renderer::PushLights(const SceneLight* lightsArray, size_t count)
{
if (count > 3) {
SDL_Log("Unsupported number of lights (%d)", static_cast<int>(count));
count = 3;
}
m_lights.assign(lightsArray, lightsArray + count);
}
void OpenGLES3Renderer::SetFrustumPlanes(const Plane* frustumPlanes)
{
}
void OpenGLES3Renderer::SetProjection(const D3DRMMATRIX4D& projection, D3DVALUE front, D3DVALUE back)
{
memcpy(&m_projection, projection, sizeof(D3DRMMATRIX4D));
}
struct TextureDestroyContextGLS2 {
OpenGLES3Renderer* renderer;
Uint32 textureId;
};
void OpenGLES3Renderer::AddTextureDestroyCallback(Uint32 id, IDirect3DRMTexture* texture)
{
auto* ctx = new TextureDestroyContextGLS2{this, id};
texture->AddDestroyCallback(
[](IDirect3DRMObject* obj, void* arg) {
auto* ctx = static_cast<TextureDestroyContextGLS2*>(arg);
auto& cache = ctx->renderer->m_textures[ctx->textureId];
if (cache.glTextureId != 0) {
glDeleteTextures(1, &cache.glTextureId);
cache.glTextureId = 0;
cache.texture = nullptr;
}
delete ctx;
},
ctx
);
}
Uint32 OpenGLES3Renderer::GetTextureId(IDirect3DRMTexture* iTexture, bool isUI, float scaleX, float scaleY)
{
SDL_GL_MakeCurrent(DDWindow, m_context);
auto texture = static_cast<Direct3DRMTextureImpl*>(iTexture);
auto surface = static_cast<DirectDrawSurfaceImpl*>(texture->m_surface);
for (Uint32 i = 0; i < m_textures.size(); ++i) {
auto& tex = m_textures[i];
if (tex.texture == texture) {
if (tex.version != texture->m_version) {
glDeleteTextures(1, &tex.glTextureId);
if (UploadTexture(surface->m_surface, tex.glTextureId, isUI)) {
tex.version = texture->m_version;
}
}
return i;
}
}
GLuint texId;
if (!UploadTexture(surface->m_surface, texId, isUI)) {
return NO_TEXTURE_ID;
}
for (Uint32 i = 0; i < m_textures.size(); ++i) {
auto& tex = m_textures[i];
if (!tex.texture) {
tex.texture = texture;
tex.version = texture->m_version;
tex.glTextureId = texId;
tex.width = surface->m_surface->w;
tex.height = surface->m_surface->h;
AddTextureDestroyCallback(i, texture);
return i;
}
}
m_textures.push_back(
{texture, texture->m_version, texId, (uint16_t) surface->m_surface->w, (uint16_t) surface->m_surface->h}
);
AddTextureDestroyCallback((Uint32) (m_textures.size() - 1), texture);
return (Uint32) (m_textures.size() - 1);
}
struct GLES3MeshDestroyContext {
OpenGLES3Renderer* renderer;
Uint32 id;
};
void OpenGLES3Renderer::AddMeshDestroyCallback(Uint32 id, IDirect3DRMMesh* mesh)
{
auto* ctx = new GLES3MeshDestroyContext{this, id};
mesh->AddDestroyCallback(
[](IDirect3DRMObject*, void* arg) {
auto* ctx = static_cast<GLES3MeshDestroyContext*>(arg);
auto& cache = ctx->renderer->m_meshs[ctx->id];
cache.meshGroup = nullptr;
glDeleteBuffers(1, &cache.vboPositions);
glDeleteBuffers(1, &cache.vboNormals);
glDeleteBuffers(1, &cache.vboTexcoords);
glDeleteBuffers(1, &cache.ibo);
glDeleteVertexArrays(1, &cache.vao);
delete ctx;
},
ctx
);
}
Uint32 OpenGLES3Renderer::GetMeshId(IDirect3DRMMesh* mesh, const MeshGroup* meshGroup)
{
for (Uint32 i = 0; i < m_meshs.size(); ++i) {
auto& cache = m_meshs[i];
if (cache.meshGroup == meshGroup) {
if (cache.version != meshGroup->version) {
cache = std::move(GLES3UploadMesh(*meshGroup));
}
return i;
}
}
auto newCache = GLES3UploadMesh(*meshGroup);
for (Uint32 i = 0; i < m_meshs.size(); ++i) {
auto& cache = m_meshs[i];
if (!cache.meshGroup) {
cache = std::move(newCache);
AddMeshDestroyCallback(i, mesh);
return i;
}
}
m_meshs.push_back(std::move(newCache));
AddMeshDestroyCallback((Uint32) (m_meshs.size() - 1), mesh);
return (Uint32) (m_meshs.size() - 1);
}
HRESULT OpenGLES3Renderer::BeginFrame()
{
SDL_GL_MakeCurrent(DDWindow, m_context);
m_dirty = true;
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
glEnable(GL_CULL_FACE);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
SceneLightGLES3 lightData[3];
int lightCount = std::min(static_cast<int>(m_lights.size()), 3);
for (int i = 0; i < lightCount; ++i) {
const auto& src = m_lights[i];
lightData[i].color[0] = src.color.r;
lightData[i].color[1] = src.color.g;
lightData[i].color[2] = src.color.b;
lightData[i].color[3] = src.color.a;
lightData[i].position[0] = src.position.x;
lightData[i].position[1] = src.position.y;
lightData[i].position[2] = src.position.z;
lightData[i].position[3] = src.positional;
lightData[i].direction[0] = src.direction.x;
lightData[i].direction[1] = src.direction.y;
lightData[i].direction[2] = src.direction.z;
lightData[i].direction[3] = src.directional;
}
for (int i = 0; i < lightCount; ++i) {
glUniform4fv(u_lightLocs[i][0], 1, lightData[i].color);
glUniform4fv(u_lightLocs[i][1], 1, lightData[i].position);
glUniform4fv(u_lightLocs[i][2], 1, lightData[i].direction);
}
glUniform1i(m_lightCountLoc, lightCount);
return DD_OK;
}
void OpenGLES3Renderer::EnableTransparency()
{
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask(GL_FALSE);
}
void OpenGLES3Renderer::SubmitDraw(
DWORD meshId,
const D3DRMMATRIX4D& modelViewMatrix,
const D3DRMMATRIX4D& worldMatrix,
const D3DRMMATRIX4D& viewMatrix,
const Matrix3x3& normalMatrix,
const Appearance& appearance
)
{
auto& mesh = m_meshs[meshId];
glUniformMatrix4fv(m_modelViewMatrixLoc, 1, GL_FALSE, &modelViewMatrix[0][0]);
glUniformMatrix3fv(m_normalMatrixLoc, 1, GL_FALSE, &normalMatrix[0][0]);
glUniformMatrix4fv(m_projectionMatrixLoc, 1, GL_FALSE, &m_projection[0][0]);
glUniform4f(
m_colorLoc,
appearance.color.r / 255.0f,
appearance.color.g / 255.0f,
appearance.color.b / 255.0f,
appearance.color.a / 255.0f
);
glUniform1f(m_shinLoc, appearance.shininess);
if (appearance.textureId != NO_TEXTURE_ID) {
glUniform1i(m_useTextureLoc, 1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_textures[appearance.textureId].glTextureId);
glUniform1i(m_textureLoc, 0);
}
else {
glUniform1i(m_useTextureLoc, 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_dummyTexture);
glUniform1i(m_textureLoc, 0);
}
glBindVertexArray(mesh.vao);
glDrawElements(GL_TRIANGLES, static_cast<GLsizei>(mesh.indices.size()), GL_UNSIGNED_SHORT, nullptr);
glBindVertexArray(0);
}
HRESULT OpenGLES3Renderer::FinalizeFrame()
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return DD_OK;
}
void OpenGLES3Renderer::Resize(int width, int height, const ViewportTransform& viewportTransform)
{
SDL_GL_MakeCurrent(DDWindow, m_context);
m_width = width;
m_height = height;
m_viewportTransform = viewportTransform;
if (m_renderedImage) {
SDL_DestroySurface(m_renderedImage);
}
m_renderedImage = SDL_CreateSurface(m_width, m_height, SDL_PIXELFORMAT_RGBA32);
if (m_colorTarget) {
glDeleteRenderbuffers(1, &m_colorTarget);
m_colorTarget = 0;
}
if (m_resolveColor) {
glDeleteRenderbuffers(1, &m_resolveColor);
m_resolveColor = 0;
}
if (m_depthTarget) {
glDeleteRenderbuffers(1, &m_depthTarget);
m_depthTarget = 0;
}
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
// Create color texture
glGenRenderbuffers(1, &m_colorTarget);
glBindRenderbuffer(GL_RENDERBUFFER, m_colorTarget);
if (m_msaa > 1) {
glRenderbufferStorageMultisample(GL_RENDERBUFFER, m_msaa, GL_RGBA8, width, height);
}
else {
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, width, height);
}
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_colorTarget);
// Create depth renderbuffer
glGenRenderbuffers(1, &m_depthTarget);
glBindRenderbuffer(GL_RENDERBUFFER, m_depthTarget);
if (m_msaa > 1) {
glRenderbufferStorageMultisample(GL_RENDERBUFFER, m_msaa, GL_DEPTH_COMPONENT24, width, height);
}
else {
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, width, height);
}
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, m_depthTarget);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
SDL_Log("FBO incomplete: 0x%X", status);
}
if (m_msaa > 1) {
glBindFramebuffer(GL_FRAMEBUFFER, m_resolveFBO);
glGenRenderbuffers(1, &m_resolveColor);
glBindRenderbuffer(GL_RENDERBUFFER, m_resolveColor);
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, width, height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_resolveColor);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
SDL_Log("Resolve FBO incomplete: 0x%X", status);
}
}
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
glViewport(0, 0, m_width, m_height);
}
void OpenGLES3Renderer::Clear(float r, float g, float b)
{
SDL_GL_MakeCurrent(DDWindow, m_context);
m_dirty = true;
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glClearColor(r, g, b, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
void OpenGLES3Renderer::Flip()
{
SDL_GL_MakeCurrent(DDWindow, m_context);
if (!m_dirty) {
return;
}
glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
glBlitFramebuffer(0, 0, m_width, m_height, 0, 0, m_width, m_height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
SDL_GL_SwapWindow(DDWindow);
m_dirty = false;
}
void OpenGLES3Renderer::Draw2DImage(Uint32 textureId, const SDL_Rect& srcRect, const SDL_Rect& dstRect, FColor color)
{
SDL_GL_MakeCurrent(DDWindow, m_context);
m_dirty = true;
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
float ambient[] = {1.0f, 1.0f, 1.0f, 1.0f};
float blank[] = {0.0f, 0.0f, 0.0f, 0.0f};
glUniform4fv(u_lightLocs[0][0], 1, ambient);
glUniform4fv(u_lightLocs[0][1], 1, blank);
glUniform4fv(u_lightLocs[0][2], 1, blank);
glUniform1i(m_lightCountLoc, 1);
glUniform4f(m_colorLoc, color.r, color.g, color.b, color.a);
glUniform1f(m_shinLoc, 0.0f);
SDL_Rect expandedDstRect;
if (textureId != NO_TEXTURE_ID) {
const GLES3TextureCacheEntry& texture = m_textures[textureId];
float scaleX = static_cast<float>(dstRect.w) / srcRect.w;
float scaleY = static_cast<float>(dstRect.h) / srcRect.h;
expandedDstRect = {
static_cast<int>(std::round(dstRect.x - srcRect.x * scaleX)),
static_cast<int>(std::round(dstRect.y - srcRect.y * scaleY)),
static_cast<int>(std::round(texture.width * scaleX)),
static_cast<int>(std::round(texture.height * scaleY))
};
glUniform1i(m_useTextureLoc, 1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture.glTextureId);
glUniform1i(m_textureLoc, 0);
}
else {
expandedDstRect = dstRect;
glUniform1i(m_useTextureLoc, 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_dummyTexture);
glUniform1i(m_textureLoc, 0);
}
D3DRMMATRIX4D modelView, projection;
Create2DTransformMatrix(
expandedDstRect,
m_viewportTransform.scale,
m_viewportTransform.offsetX,
m_viewportTransform.offsetY,
modelView
);
glUniformMatrix4fv(m_modelViewMatrixLoc, 1, GL_FALSE, &modelView[0][0]);
Matrix3x3 identity = {{1.f, 0.f, 0.f}, {0.f, 1.f, 0.f}, {0.f, 0.f, 1.f}};
glUniformMatrix3fv(m_normalMatrixLoc, 1, GL_FALSE, &identity[0][0]);
CreateOrthographicProjection((float) m_width, (float) m_height, projection);
glUniformMatrix4fv(m_projectionMatrixLoc, 1, GL_FALSE, &projection[0][0]);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_SCISSOR_TEST);
glScissor(
static_cast<int>(std::round(dstRect.x * m_viewportTransform.scale + m_viewportTransform.offsetX)),
m_height - static_cast<int>(
std::round((dstRect.y + dstRect.h) * m_viewportTransform.scale + m_viewportTransform.offsetY)
),
static_cast<int>(std::round(dstRect.w * m_viewportTransform.scale)),
static_cast<int>(std::round(dstRect.h * m_viewportTransform.scale))
);
glBindVertexArray(m_uiMeshCache.vao);
glDrawElements(GL_TRIANGLES, static_cast<GLsizei>(m_uiMeshCache.indices.size()), GL_UNSIGNED_SHORT, nullptr);
glBindVertexArray(0);
glDisable(GL_SCISSOR_TEST);
}
void OpenGLES3Renderer::Download(SDL_Surface* target)
{
glFinish();
if (m_msaa > 1) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_resolveFBO);
glBlitFramebuffer(0, 0, m_width, m_height, 0, 0, m_width, m_height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_FRAMEBUFFER, m_resolveFBO);
}
else {
glBindFramebuffer(GL_FRAMEBUFFER, m_fbo);
}
glReadPixels(0, 0, m_width, m_height, GL_RGBA, GL_UNSIGNED_BYTE, m_renderedImage->pixels);
SDL_Rect srcRect = {
static_cast<int>(m_viewportTransform.offsetX),
static_cast<int>(m_viewportTransform.offsetY),
static_cast<int>(target->w * m_viewportTransform.scale),
static_cast<int>(target->h * m_viewportTransform.scale),
};
SDL_Surface* bufferClone = SDL_CreateSurface(target->w, target->h, SDL_PIXELFORMAT_RGBA32);
if (!bufferClone) {
SDL_Log("SDL_CreateSurface: %s", SDL_GetError());
return;
}
SDL_BlitSurfaceScaled(m_renderedImage, &srcRect, bufferClone, nullptr, SDL_SCALEMODE_NEAREST);
// Flip image vertically into target
SDL_Rect rowSrc = {0, 0, bufferClone->w, 1};
SDL_Rect rowDst = {0, 0, bufferClone->w, 1};
for (int y = 0; y < bufferClone->h; ++y) {
rowSrc.y = y;
rowDst.y = bufferClone->h - 1 - y;
SDL_BlitSurface(bufferClone, &rowSrc, target, &rowDst);
}
SDL_DestroySurface(bufferClone);
}
void OpenGLES3Renderer::SetDither(bool dither)
{
if (dither) {
glEnable(GL_DITHER);
}
else {
glDisable(GL_DITHER);
}
}