isle/tools/reccmp/reccmp.py
2023-11-23 00:19:07 +13:00

617 lines
21 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import base64
import difflib
import json
import logging
import os
import re
import subprocess
import sys
from isledecomp import (
Bin,
find_code_blocks,
OffsetPlaceholderGenerator,
print_diff,
RecompiledInfo,
walk_source_dir,
WinePathConverter,
)
from capstone import Cs, CS_ARCH_X86, CS_MODE_32
import colorama
from pystache import Renderer
REGISTER_LIST = set(
[
"ax",
"bp",
"bx",
"cx",
"di",
"dx",
"eax",
"ebp",
"ebx",
"ecx",
"edi",
"edx",
"esi",
"esp",
"si",
"sp",
]
)
WORDS = re.compile(r"\w+")
def get_file_in_script_dir(fn):
return os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), fn)
# Declare a class that parses the output of cvdump for fast access later
class SymInfo:
funcs = {}
lines = {}
names = {}
def __init__(self, pdb, sym_recompfile, sym_logger, sym_wine_path_converter=None):
self.logger = sym_logger
call = [get_file_in_script_dir("cvdump.exe"), "-l", "-s"]
if sym_wine_path_converter:
# Run cvdump through wine and convert path to Windows-friendly wine path
call.insert(0, "wine")
call.append(sym_wine_path_converter.get_wine_path(pdb))
else:
call.append(pdb)
self.logger.info("Parsing %s ...", pdb)
self.logger.debug("Command = %s", call)
line_dump = subprocess.check_output(call).decode("utf-8").split("\r\n")
current_section = None
self.logger.debug("Parsing output of cvdump.exe ...")
for i, line in enumerate(line_dump):
if line.startswith("***"):
current_section = line[4:]
if current_section == "SYMBOLS" and "S_GPROC32" in line:
sym_addr = int(line[26:34], 16)
info = RecompiledInfo()
info.addr = (
sym_addr + sym_recompfile.imagebase + sym_recompfile.textvirt
)
use_dbg_offs = False
if use_dbg_offs:
debug_offs = line_dump[i + 2]
debug_start = int(debug_offs[22:30], 16)
debug_end = int(debug_offs[43:], 16)
info.start = debug_start
info.size = debug_end - debug_start
else:
info.start = 0
info.size = int(line[41:49], 16)
info.name = line[77:]
self.names[info.name] = info
self.funcs[sym_addr] = info
elif (
current_section == "LINES"
and line.startswith(" ")
and not line.startswith(" ")
):
sourcepath = line.split()[0]
if sym_wine_path_converter:
# Convert filename to Unix path for file compare
sourcepath = sym_wine_path_converter.get_unix_path(sourcepath)
if sourcepath not in self.lines:
self.lines[sourcepath] = {}
j = i + 2
while True:
ll = line_dump[j].split()
if len(ll) == 0:
break
k = 0
while k < len(ll):
linenum = int(ll[k + 0])
address = int(ll[k + 1], 16)
if linenum not in self.lines[sourcepath]:
self.lines[sourcepath][linenum] = address
k += 2
j += 1
self.logger.debug("... Parsing output of cvdump.exe finished")
def get_recompiled_address(self, filename, line):
recompiled_addr = None
self.logger.debug("Looking for %s:%s", filename, line)
filename_basename = os.path.basename(filename).lower()
for fn in self.lines:
# Sometimes a PDB is compiled with a relative path while we always have
# an absolute path. Therefore we must
try:
if os.path.basename(
fn
).lower() == filename_basename and os.path.samefile(fn, filename):
filename = fn
break
except FileNotFoundError:
continue
if filename in self.lines and line in self.lines[filename]:
recompiled_addr = self.lines[filename][line]
if recompiled_addr in self.funcs:
return self.funcs[recompiled_addr]
self.logger.error(
"Failed to find function symbol with address: %x", recompiled_addr
)
return None
self.logger.error(
"Failed to find function symbol with filename and line: %s:%s",
filename,
line,
)
return None
def get_recompiled_address_from_name(self, name):
self.logger.debug("Looking for %s", name)
if name in self.names:
return self.names[name]
self.logger.error("Failed to find function symbol with name: %s", name)
return None
def sanitize(file, placeholder_generator, mnemonic, op_str):
op_str_is_number = False
try:
int(op_str, 16)
op_str_is_number = True
except ValueError:
pass
if (mnemonic in ["call", "jmp"]) and op_str_is_number:
# Filter out "calls" because the offsets we're not currently trying to
# match offsets. As long as there's a call in the right place, it's
# probably accurate.
op_str = placeholder_generator.get(int(op_str, 16))
else:
def filter_out_ptr(ptype, op_str):
try:
ptrstr = ptype + " ptr ["
start = op_str.index(ptrstr) + len(ptrstr)
end = op_str.index("]", start)
# This will throw ValueError if not hex
inttest = int(op_str[start:end], 16)
return (
op_str[0:start] + placeholder_generator.get(inttest) + op_str[end:]
)
except ValueError:
return op_str
# Filter out dword ptrs where the pointer is to an offset
op_str = filter_out_ptr("dword", op_str)
op_str = filter_out_ptr("word", op_str)
op_str = filter_out_ptr("byte", op_str)
# Use heuristics to filter out any args that look like offsets
words = op_str.split(" ")
for i, word in enumerate(words):
try:
inttest = int(word, 16)
if inttest >= file.imagebase + file.textvirt:
words[i] = placeholder_generator.get(inttest)
except ValueError:
pass
op_str = " ".join(words)
return mnemonic, op_str
def parse_asm(disassembler, file, asm_addr, size):
asm = []
data = file.read(asm_addr, size)
placeholder_generator = OffsetPlaceholderGenerator()
for i in disassembler.disasm(data, 0):
# Use heuristics to disregard some differences that aren't representative
# of the accuracy of a function (e.g. global offsets)
mnemonic, op_str = sanitize(file, placeholder_generator, i.mnemonic, i.op_str)
if op_str is None:
asm.append(mnemonic)
else:
asm.append(f"{mnemonic} {op_str}")
return asm
def get_registers(line: str):
to_replace = []
# use words regex to find all matching positions:
for match in WORDS.finditer(line):
reg = match.group(0)
if reg in REGISTER_LIST:
to_replace.append((reg, match.start()))
return to_replace
def replace_register(
lines: list[str], start_line: int, reg: str, replacement: str
) -> list[str]:
return [
line.replace(reg, replacement) if i >= start_line else line
for i, line in enumerate(lines)
]
# Is it possible to make new_asm the same as original_asm by swapping registers?
def can_resolve_register_differences(original_asm, new_asm):
# Split the ASM on spaces to get more granularity, and so
# that we don't modify the original arrays passed in.
original_asm = [part for line in original_asm for part in line.split()]
new_asm = [part for line in new_asm for part in line.split()]
# Swapping ain't gonna help if the lengths are different
if len(original_asm) != len(new_asm):
return False
# Look for the mismatching lines
for i, original_line in enumerate(original_asm):
new_line = new_asm[i]
if new_line != original_line:
# Find all the registers to replace
to_replace = get_registers(original_line)
for replace in to_replace:
(reg, reg_index) = replace
replacing_reg = new_line[reg_index : reg_index + len(reg)]
if replacing_reg in REGISTER_LIST:
if replacing_reg != reg:
# Do a three-way swap replacing in all the subsequent lines
temp_reg = "&" * len(reg)
new_asm = replace_register(new_asm, i, replacing_reg, temp_reg)
new_asm = replace_register(new_asm, i, reg, replacing_reg)
new_asm = replace_register(new_asm, i, temp_reg, reg)
else:
# No replacement to do, different code, bail out
return False
# Check if the lines are now the same
for i, original_line in enumerate(original_asm):
if new_asm[i] != original_line:
return False
return True
def gen_html(html_file, data):
output_data = Renderer().render_path(
get_file_in_script_dir("template.html"), {"data": data}
)
with open(html_file, "w", encoding="utf-8") as htmlfile:
htmlfile.write(output_data)
def gen_svg(svg_file, name_svg, icon, svg_implemented_funcs, total_funcs, raw_accuracy):
icon_data = None
if icon:
with open(icon, "rb") as iconfile:
icon_data = base64.b64encode(iconfile.read()).decode("utf-8")
total_statistic = raw_accuracy / total_funcs
full_percentbar_width = 127.18422
output_data = Renderer().render_path(
get_file_in_script_dir("template.svg"),
{
"name": name_svg,
"icon": icon_data,
"implemented": f"{(svg_implemented_funcs / total_funcs * 100):.2f}% ({svg_implemented_funcs}/{total_funcs})",
"accuracy": f"{(raw_accuracy / svg_implemented_funcs * 100):.2f}%",
"progbar": total_statistic * full_percentbar_width,
"percent": f"{(total_statistic * 100):.2f}%",
},
)
with open(svg_file, "w", encoding="utf-8") as svgfile:
svgfile.write(output_data)
# Do the actual work
if __name__ == "__main__":
parser = argparse.ArgumentParser(
allow_abbrev=False,
description="Recompilation Compare: compare an original EXE with a recompiled EXE + PDB.",
)
parser.add_argument(
"original", metavar="original-binary", help="The original binary"
)
parser.add_argument(
"recompiled", metavar="recompiled-binary", help="The recompiled binary"
)
parser.add_argument(
"pdb", metavar="recompiled-pdb", help="The PDB of the recompiled binary"
)
parser.add_argument(
"decomp_dir", metavar="decomp-dir", help="The decompiled source tree"
)
parser.add_argument(
"--total",
"-T",
metavar="<count>",
help="Total number of expected functions (improves total accuracy statistic)",
)
parser.add_argument(
"--verbose",
"-v",
metavar="<offset>",
help="Print assembly diff for specific function (original file's offset)",
)
parser.add_argument(
"--html",
"-H",
metavar="<file>",
help="Generate searchable HTML summary of status and diffs",
)
parser.add_argument(
"--no-color", "-n", action="store_true", help="Do not color the output"
)
parser.add_argument(
"--svg", "-S", metavar="<file>", help="Generate SVG graphic of progress"
)
parser.add_argument("--svg-icon", metavar="icon", help="Icon to use in SVG (PNG)")
parser.add_argument(
"--print-rec-addr",
action="store_true",
help="Print addresses of recompiled functions too",
)
parser.set_defaults(loglevel=logging.INFO)
parser.add_argument(
"--debug",
action="store_const",
const=logging.DEBUG,
dest="loglevel",
help="Print script debug information",
)
args = parser.parse_args()
logging.basicConfig(level=args.loglevel, format="[%(levelname)s] %(message)s")
logger = logging.getLogger(__name__)
colorama.init()
verbose = None
found_verbose_target = False
if args.verbose:
try:
verbose = int(args.verbose, 16)
except ValueError:
parser.error("invalid verbose argument")
html_path = args.html
plain = args.no_color
original = args.original
if not os.path.isfile(original):
parser.error(f"Original binary {original} does not exist")
recomp = args.recompiled
if not os.path.isfile(recomp):
parser.error(f"Recompiled binary {recomp} does not exist")
syms = args.pdb
if not os.path.isfile(syms):
parser.error(f"Symbols PDB {syms} does not exist")
source = args.decomp_dir
if not os.path.isdir(source):
parser.error(f"Source directory {source} does not exist")
svg = args.svg
wine_path_converter = None
if os.name != "nt":
wine_path_converter = WinePathConverter(source)
with Bin(original, logger) as origfile, Bin(recomp, logger) as recompfile:
syminfo = SymInfo(
syms, recompfile, logger, sym_wine_path_converter=wine_path_converter
)
print()
capstone_disassembler = Cs(CS_ARCH_X86, CS_MODE_32)
function_count = 0
total_accuracy = 0
total_effective_accuracy = 0
htmlinsert = []
# Generate basename of original file, used in locating OFFSET lines
basename = os.path.basename(os.path.splitext(original)[0])
for srcfilename in walk_source_dir(source):
with open(srcfilename, "r", encoding="utf-8") as srcfile:
blocks = find_code_blocks(srcfile)
for block in blocks:
if block.is_stub:
continue
if block.module != basename:
continue
addr = block.offset
# Verbose flag handling
if verbose:
if addr == verbose:
found_verbose_target = True
else:
continue
if block.is_template:
recinfo = syminfo.get_recompiled_address_from_name(block.signature)
if not recinfo:
continue
else:
recinfo = syminfo.get_recompiled_address(
srcfilename, block.start_line
)
if not recinfo:
continue
# The effective_ratio is the ratio when ignoring differing register
# allocation vs the ratio is the true ratio.
ratio = 0.0
effective_ratio = 0.0
if recinfo.size:
origasm = parse_asm(
capstone_disassembler,
origfile,
addr + recinfo.start,
recinfo.size,
)
recompasm = parse_asm(
capstone_disassembler,
recompfile,
recinfo.addr + recinfo.start,
recinfo.size,
)
diff = difflib.SequenceMatcher(None, origasm, recompasm)
ratio = diff.ratio()
effective_ratio = ratio
if ratio != 1.0:
# Check whether we can resolve register swaps which are actually
# perfect matches modulo compiler entropy.
if can_resolve_register_differences(origasm, recompasm):
effective_ratio = 1.0
else:
ratio = 0
percenttext = f"{(effective_ratio * 100):.2f}%"
if not plain:
if effective_ratio == 1.0:
percenttext = (
colorama.Fore.GREEN + percenttext + colorama.Style.RESET_ALL
)
elif effective_ratio > 0.8:
percenttext = (
colorama.Fore.YELLOW
+ percenttext
+ colorama.Style.RESET_ALL
)
else:
percenttext = (
colorama.Fore.RED + percenttext + colorama.Style.RESET_ALL
)
if effective_ratio == 1.0 and ratio != 1.0:
if plain:
percenttext += "*"
else:
percenttext += (
colorama.Fore.RED + "*" + colorama.Style.RESET_ALL
)
if args.print_rec_addr:
addrs = f"0x{addr:x} / 0x{recinfo.addr:x}"
else:
addrs = hex(addr)
if not verbose:
print(
f" {recinfo.name} ({addrs}) is {percenttext} similar to the original"
)
function_count += 1
total_accuracy += ratio
total_effective_accuracy += effective_ratio
if recinfo.size:
udiff = difflib.unified_diff(origasm, recompasm, n=10)
# If verbose, print the diff for that function to the output
if verbose:
if effective_ratio == 1.0:
ok_text = (
"OK!"
if plain
else (
colorama.Fore.GREEN
+ "✨ OK! ✨"
+ colorama.Style.RESET_ALL
)
)
if ratio == 1.0:
print(
f"{addrs}: {recinfo.name} 100% match.\n\n{ok_text}\n\n"
)
else:
print(
f"{addrs}: {recinfo.name} Effective 100%% match. (Differs in register allocation only)\n\n{ok_text} (still differs in register allocation)\n\n"
)
else:
print_diff(udiff, plain)
print(
f"\n{recinfo.name} is only {percenttext} similar to the original, diff above"
)
# If html, record the diffs to an HTML file
if html_path:
htmlinsert.append(
{
"address": f"0x{addr:x}",
"name": recinfo.name,
"matching": effective_ratio,
"diff": "\n".join(udiff),
}
)
if html_path:
gen_html(html_path, json.dumps(htmlinsert))
if verbose:
if not found_verbose_target:
print(f"Failed to find the function with address 0x{verbose:x}")
else:
implemented_funcs = function_count
if args.total:
function_count = int(args.total)
if function_count > 0:
effective_accuracy = total_effective_accuracy / function_count * 100
actual_accuracy = total_accuracy / function_count * 100
print(
f"\nTotal effective accuracy {effective_accuracy:.2f}% across {function_count} functions ({actual_accuracy:.2f}% actual accuracy)"
)
if svg:
gen_svg(
svg,
os.path.basename(original),
args.svg_icon,
implemented_funcs,
function_count,
total_effective_accuracy,
)