isle/LEGO1/mxbinarytree.cpp
disinvite 8afddd3bdb Few more cleanup items before opening up to comments
* Tried a "Find" method to reduce repeated code between MxAtomId::Destroy and TreeAdd functions
* Renamed the "Successor" function
* There is a destructor for the RB tree. I started on one of the companion functions but it is unfinished here.
2023-07-29 18:34:18 -04:00

258 lines
5.6 KiB
C++

#include "mxbinarytree.h"
// 0x101013f0
TreeNode *MxBinaryTree::g_Node_Nil = NULL;
/*
// OFFSET: LEGO1 0x100ad170
TreeValue::~TreeValue()
{
// nothing.
}
*/
inline void MxBinaryTree::RightRotate(TreeNode *x)
{
TreeNode *y = x->m_child1;
x->m_child1 = y->m_child0;
if (y->m_child0 != g_Node_Nil)
y->m_child0->m_parent = x;
y->m_parent = x->m_parent;
if (m_root->m_parent != x) {
if (x != x->m_parent->m_child0) {
x->m_parent->m_child1 = y;
y->m_child0 = x;
x->m_parent = y;
} else {
x->m_parent->m_child0 = y;
y->m_child0 = x;
x->m_parent = y;
}
} else {
m_root->m_parent->m_child0 = y;
y->m_child0 = x;
x->m_parent = y;
}
}
inline void MxBinaryTree::LeftRotate(TreeNode *x)
{
TreeNode *y = x->m_child0;
x->m_child0 = y->m_child1;
if (y->m_child1 != g_Node_Nil)
y->m_child1->m_parent = x;
y->m_parent = x->m_parent;
if (m_root->m_parent != x) {
if (x != x->m_parent->m_child1) {
x->m_parent->m_child0 = y;
y->m_child1 = x;
x->m_parent = y;
} else {
x->m_parent->m_child1 = y;
y->m_child1 = x;
x->m_parent = y;
}
} else {
m_root->m_parent->m_child1 = y;
y->m_child1 = x;
x->m_parent = y;
}
}
inline TreeNode *minimum(TreeNode *p_node)
{
// horrible. but it has to be this way to
// force a non-branching JMP to repeat the loop.
while (1) {
if (p_node->m_child1 == MxBinaryTree::g_Node_Nil)
break;
p_node = p_node->m_child1;
}
return p_node;
}
// OFFSET: LEGO1 0x100ad480
void Successor(TreeNode* &p_node)
{
// I think this is checking whether this is the tree "root" node
// i.e. MxBinaryTree->m_root
// The actual root is m_root->parent. There is an intentional loop here.
// If it is the "root" node, return the minimum value of the tree.
// We have a reference to it at m_root->m_child1.
if (p_node->m_color == NODE_COLOR_RED
&& p_node->m_parent->m_parent == p_node) {
p_node = p_node->m_child1;
return;
}
if (p_node->m_child0 != MxBinaryTree::g_Node_Nil) {
p_node = minimum(p_node->m_child0);
return;
}
// p_node->m_child0 *is* NIL, so go up a level and try it
TreeNode *y = p_node->m_parent;
while (p_node == y->m_child0) {
p_node = y;
y = y->m_parent;
}
}
// OFFSET: LEGO1 0x100ad4d0
void MxBinaryTree::Insert(TreeNode **p_output, TreeNode *p_leaf, TreeNode *p_parent, TreeValue *&p_value)
{
TreeNode *node = newTreeNode(p_parent, NODE_COLOR_RED);
node->m_child0 = g_Node_Nil;
node->m_child1 = g_Node_Nil;
// TODO: ???
if (&node->m_value)
node->m_value = p_value;
this->m_nodeCount++;
// if tree is NOT empty
// if param_2 is tree_nil (always true I think?)
//
if (m_root != p_parent
&& p_leaf == MxBinaryTree::g_Node_Nil
&& TreeValueCompare(p_value, p_parent->m_value)) {
p_parent->m_child1 = node;
if (m_root->m_child1 == p_parent)
// Set the tree minimum.
m_root->m_child1 = node;
} else {
p_parent->m_child0 = node;
if (m_root != p_parent) {
if (m_root->m_child0 == p_parent)
// Set the tree maximum.
m_root->m_child0 = node;
} else {
// Set the tree minimum and top node.
m_root->m_parent = node;
m_root->m_child1 = node;
}
}
// LAB_100ad593
// rebalance the tree
TreeNode *cur = node;
while (m_root->m_parent != cur) {
TreeNode *parent = cur->m_parent;
if (parent->m_color != NODE_COLOR_RED)
break;
TreeNode *uncle = parent->m_parent->m_child0;
if (uncle == parent) {
// wrong uncle
uncle = parent->m_parent->m_child1;
if (uncle->m_color != NODE_COLOR_RED) {
// 100ad5d3
if (parent->m_child1 == cur) {
cur = parent;
RightRotate(cur);
}
// LAB_100ad60f
cur->m_parent->m_color = NODE_COLOR_BLACK;
cur->m_parent->m_parent->m_color = NODE_COLOR_RED;
LeftRotate(cur->m_parent->m_parent);
continue;
}
} else {
// LAB_100ad67f
if (uncle->m_color != NODE_COLOR_RED) {
if (parent->m_child0 == cur) {
cur = parent;
LeftRotate(cur);
}
// LAB_100ad60f
cur->m_parent->m_color = NODE_COLOR_BLACK;
cur->m_parent->m_parent->m_color = NODE_COLOR_RED;
RightRotate(cur->m_parent->m_parent);
continue;
}
}
// LAB_100ad72c
parent->m_color = NODE_COLOR_BLACK;
uncle->m_color = NODE_COLOR_BLACK;
parent->m_parent->m_color = NODE_COLOR_RED;
cur = parent->m_parent;
}
m_root->m_parent->m_color = NODE_COLOR_BLACK;
*p_output = node;
}
// OFFSET: LEGO1 0x100ad780
TreeNode *MxBinaryTree::Search(TreeValue*& p_value)
{
TreeNode *node_match = m_root;
TreeNode *t_node = node_match->m_parent;
while (t_node != g_Node_Nil) {
if (!TreeValueCompare(t_node->m_value, p_value)) {
// closest match?
// it either does match or is where we will insert the new node.
node_match = t_node;
t_node = t_node->m_child0;
} else {
t_node = t_node->m_child1;
}
}
return node_match;
}
// OFFSET: LEGO1 0x100ad7f0
void TreeValue::RefCountInc()
{
m_t0++;
}
// OFFSET: LEGO1 0x100ad800
void TreeValue::RefCountDec()
{
if (m_t0)
m_t0--;
}
// OFFSET: LEGO1 0x100af6d0 STUB
MxBinaryTree::~MxBinaryTree()
{
}
// OFFSET: LEGO1 0x100af7a0
void somethingWithNode(TreeNode*& p_node)
{
// TODO
if (p_node->m_child1 != MxBinaryTree::g_Node_Nil) {
p_node = minimum(p_node->m_child1);
return;
}
while (p_node->m_parent->m_child0 == p_node)
p_node = p_node->m_parent;
if (p_node->m_child1 == p_node->m_parent)
p_node = p_node->m_parent;
}