#include "d3drm_impl.h" #include "d3drmframe_impl.h" #include "d3drmrenderer.h" #include "d3drmviewport_impl.h" #include "ddraw_impl.h" #include "miniwin.h" #include #include #include #include #include #include typedef D3DVALUE Matrix3x3[3][3]; Direct3DRMViewportImpl::Direct3DRMViewportImpl(DWORD width, DWORD height, Direct3DRMRenderer* rendere) : m_width(width), m_height(height), m_renderer(rendere) { } static void D3DRMMatrixMultiply(D3DRMMATRIX4D out, const D3DRMMATRIX4D a, const D3DRMMATRIX4D b) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { out[i][j] = 0.0f; for (int k = 0; k < 4; ++k) { out[i][j] += a[i][k] * b[k][j]; } } } } static void D3DRMMatrixInvertForNormal(Matrix3x3 out, const D3DRMMATRIX4D m) { float a = m[0][0], b = m[0][1], c = m[0][2]; float d = m[1][0], e = m[1][1], f = m[1][2]; float g = m[2][0], h = m[2][1], i = m[2][2]; float det = a * (e * i - f * h) - b * (d * i - f * g) + c * (d * h - e * g); if (fabs(det) < 1e-6f) { memset(out, 0, sizeof(Matrix3x3)); return; } float invDet = 1.0f / det; out[0][0] = (e * i - f * h) * invDet; out[1][0] = (c * h - b * i) * invDet; out[2][0] = (b * f - c * e) * invDet; out[0][1] = (f * g - d * i) * invDet; out[1][1] = (a * i - c * g) * invDet; out[2][1] = (c * d - a * f) * invDet; out[0][2] = (d * h - e * g) * invDet; out[1][2] = (b * g - a * h) * invDet; out[2][2] = (a * e - b * d) * invDet; } static void D3DRMMatrixInvertOrthogonal(D3DRMMATRIX4D out, const D3DRMMATRIX4D m) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { out[i][j] = m[j][i]; } } out[0][3] = out[1][3] = out[2][3] = 0.f; out[3][3] = 1.f; D3DVECTOR t = {m[3][0], m[3][1], m[3][2]}; out[3][0] = -(out[0][0] * t.x + out[1][0] * t.y + out[2][0] * t.z); out[3][1] = -(out[0][1] * t.x + out[1][1] * t.y + out[2][1] * t.z); out[3][2] = -(out[0][2] * t.x + out[1][2] * t.y + out[2][2] * t.z); } static void ComputeFrameWorldMatrix(IDirect3DRMFrame* frame, D3DRMMATRIX4D out) { D3DRMMATRIX4D acc = {{1.f, 0.f, 0.f, 0.f}, {0.f, 1.f, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; IDirect3DRMFrame* cur = frame; while (cur) { auto* impl = static_cast(cur); D3DRMMATRIX4D local; memcpy(local, impl->m_transform, sizeof(local)); D3DRMMATRIX4D tmp; D3DRMMatrixMultiply(tmp, local, acc); memcpy(acc, tmp, sizeof(acc)); if (cur == impl->m_parent) { break; } cur = impl->m_parent; } memcpy(out, acc, sizeof(acc)); } D3DVECTOR ComputeTriangleNormal(const D3DVECTOR& v0, const D3DVECTOR& v1, const D3DVECTOR& v2) { D3DVECTOR u = {v1.x - v0.x, v1.y - v0.y, v1.z - v0.z}; D3DVECTOR v = {v2.x - v0.x, v2.y - v0.y, v2.z - v0.z}; D3DVECTOR normal = {u.y * v.z - u.z * v.y, u.z * v.x - u.x * v.z, u.x * v.y - u.y * v.x}; float len = std::sqrt(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z); if (len > 0.0f) { normal.x /= len; normal.y /= len; normal.z /= len; } return normal; } HRESULT Direct3DRMViewportImpl::CollectSceneData() { m_backgroundColor = static_cast(m_rootFrame)->m_backgroundColor; std::vector lights; std::vector verts; // Compute camera matrix D3DRMMATRIX4D cameraWorld, viewMatrix; ComputeFrameWorldMatrix(m_camera, cameraWorld); D3DRMMatrixInvertOrthogonal(viewMatrix, cameraWorld); std::function recurseFrame; std::function recurseChildren; recurseChildren = [&](IDirect3DRMFrame* frame, D3DRMMATRIX4D parentMatrix) { // Retrieve the current frame's transform Direct3DRMFrameImpl* frameImpl = static_cast(frame); D3DRMMATRIX4D localMatrix; memcpy(localMatrix, frameImpl->m_transform, sizeof(D3DRMMATRIX4D)); // Compute combined world matrix: world = parent * local D3DRMMATRIX4D worldMatrix; D3DRMMatrixMultiply(worldMatrix, parentMatrix, localMatrix); // === Extract lights from the frame === IDirect3DRMLightArray* lightArray = nullptr; if (SUCCEEDED(frame->GetLights(&lightArray)) && lightArray) { DWORD lightCount = lightArray->GetSize(); for (DWORD li = 0; li < lightCount; ++li) { IDirect3DRMLight* light = nullptr; if (SUCCEEDED(lightArray->GetElement(li, &light)) && light) { D3DCOLOR color = light->GetColor(); D3DRMLIGHTTYPE type = light->GetType(); SceneLight extracted; extracted.color.r = ((color >> 0) & 0xFF) / 255.0f; extracted.color.g = ((color >> 8) & 0xFF) / 255.0f; extracted.color.b = ((color >> 16) & 0xFF) / 255.0f; extracted.color.a = ((color >> 24) & 0xFF) / 255.0f; if (type == D3DRMLIGHT_POINT || type == D3DRMLIGHT_SPOT || type == D3DRMLIGHT_PARALLELPOINT) { extracted.position.x = worldMatrix[3][0]; extracted.position.y = worldMatrix[3][1]; extracted.position.z = worldMatrix[3][2]; extracted.positional = 1.f; } if (type == D3DRMLIGHT_DIRECTIONAL || type == D3DRMLIGHT_SPOT) { extracted.direction.x = worldMatrix[2][0]; extracted.direction.y = worldMatrix[2][1]; extracted.direction.z = worldMatrix[2][2]; extracted.directional = 1.f; } lights.push_back(extracted); light->Release(); } } lightArray->Release(); } IDirect3DRMFrameArray* children = nullptr; if (SUCCEEDED(frame->GetChildren(&children)) && children) { DWORD n = children->GetSize(); for (DWORD i = 0; i < n; ++i) { IDirect3DRMFrame* childFrame = nullptr; children->GetElement(i, &childFrame); recurseChildren(childFrame, worldMatrix); childFrame->Release(); } children->Release(); } }; recurseFrame = [&](IDirect3DRMFrame* frame, D3DRMMATRIX4D parentMatrix) { // Retrieve the current frame's transform Direct3DRMFrameImpl* frameImpl = static_cast(frame); D3DRMMATRIX4D localMatrix; memcpy(localMatrix, frameImpl->m_transform, sizeof(D3DRMMATRIX4D)); // Compute combined world matrix: world = parent * local D3DRMMATRIX4D worldMatrix; Matrix3x3 worldMatrixInvert; D3DRMMatrixMultiply(worldMatrix, parentMatrix, localMatrix); D3DRMMatrixInvertForNormal(worldMatrixInvert, worldMatrix); IDirect3DRMVisualArray* va = nullptr; if (SUCCEEDED(frame->GetVisuals(&va)) && va) { DWORD n = va->GetSize(); for (DWORD i = 0; i < n; ++i) { IDirect3DRMVisual* vis = nullptr; va->GetElement(i, &vis); if (!vis) { continue; } // Pull geometry from meshes IDirect3DRMMesh* mesh = nullptr; if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMMesh, (void**) &mesh)) && mesh) { DWORD groupCount = mesh->GetGroupCount(); for (DWORD gi = 0; gi < groupCount; ++gi) { DWORD vtxCount, faceCount, vpf, dataSize; mesh->GetGroup(gi, &vtxCount, &faceCount, &vpf, &dataSize, nullptr); std::vector d3dVerts(vtxCount); std::vector faces(dataSize); mesh->GetVertices(gi, 0, vtxCount, d3dVerts.data()); mesh->GetGroup(gi, &vtxCount, &faceCount, &vpf, nullptr, faces.data()); D3DCOLOR color = mesh->GetGroupColor(gi); D3DRMRENDERQUALITY quality = mesh->GetGroupQuality(gi); IDirect3DRMTexture* texture = nullptr; mesh->GetGroupTexture(gi, &texture); IDirect3DRMMaterial* material = nullptr; mesh->GetGroupMaterial(gi, &material); Uint32 texId = NO_TEXTURE_ID; if (texture) { texId = m_renderer->GetTextureId(texture); texture->Release(); } float shininess = 0.0f; if (material) { shininess = material->GetPower(); material->Release(); } for (DWORD fi = 0; fi < faceCount; ++fi) { D3DVECTOR norm; if (quality == D3DRMRENDER_FLAT || quality == D3DRMRENDER_UNLITFLAT) { // Discard normals and calculate flat ones D3DRMVERTEX& v0 = d3dVerts[faces[fi * vpf + 0]]; D3DRMVERTEX& v1 = d3dVerts[faces[fi * vpf + 1]]; D3DRMVERTEX& v2 = d3dVerts[faces[fi * vpf + 2]]; norm = ComputeTriangleNormal(v0.position, v1.position, v2.position); } for (int idx = 0; idx < vpf; ++idx) { auto& dv = d3dVerts[faces[fi * vpf + idx]]; // Apply world transform to the vertex D3DVECTOR pos = dv.position; if (quality == D3DRMRENDER_GOURAUD || quality == D3DRMRENDER_PHONG) { norm = dv.normal; } D3DVECTOR worldPos; worldPos.x = pos.x * worldMatrix[0][0] + pos.y * worldMatrix[1][0] + pos.z * worldMatrix[2][0] + worldMatrix[3][0]; worldPos.y = pos.x * worldMatrix[0][1] + pos.y * worldMatrix[1][1] + pos.z * worldMatrix[2][1] + worldMatrix[3][1]; worldPos.z = pos.x * worldMatrix[0][2] + pos.y * worldMatrix[1][2] + pos.z * worldMatrix[2][2] + worldMatrix[3][2]; // View transform D3DVECTOR viewPos; viewPos.x = worldPos.x * viewMatrix[0][0] + worldPos.y * viewMatrix[1][0] + worldPos.z * viewMatrix[2][0] + viewMatrix[3][0]; viewPos.y = worldPos.x * viewMatrix[0][1] + worldPos.y * viewMatrix[1][1] + worldPos.z * viewMatrix[2][1] + viewMatrix[3][1]; viewPos.z = worldPos.x * viewMatrix[0][2] + worldPos.y * viewMatrix[1][2] + worldPos.z * viewMatrix[2][2] + viewMatrix[3][2]; // View transform D3DVECTOR viewNorm; viewNorm.x = norm.x * worldMatrixInvert[0][0] + norm.y * worldMatrixInvert[1][0] + norm.z * worldMatrixInvert[2][0]; viewNorm.y = norm.x * worldMatrixInvert[0][1] + norm.y * worldMatrixInvert[1][1] + norm.z * worldMatrixInvert[2][1]; viewNorm.z = norm.x * worldMatrixInvert[0][2] + norm.y * worldMatrixInvert[1][2] + norm.z * worldMatrixInvert[2][2]; float len = sqrtf(viewNorm.x * viewNorm.x + viewNorm.y * viewNorm.y + viewNorm.z * viewNorm.z); if (len > 0.0f) { float invLen = 1.0f / len; viewNorm.x *= invLen; viewNorm.y *= invLen; viewNorm.z *= invLen; } PositionColorVertex vtx; vtx.position = viewPos; vtx.normals = viewNorm; vtx.colors = { static_cast((color >> 16) & 0xFF), static_cast((color >> 8) & 0xFF), static_cast((color >> 0) & 0xFF), static_cast((color >> 24) & 0xFF) }; vtx.shininess = shininess; vtx.texId = texId; vtx.texCoord = {dv.tu, dv.tv}; verts.push_back(vtx); } } } mesh->Release(); } // Recurse into sub frames IDirect3DRMFrame* childFrame = nullptr; if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMFrame, (void**) &childFrame)) && childFrame) { recurseFrame(childFrame, worldMatrix); childFrame->Release(); } vis->Release(); } va->Release(); } }; D3DRMMATRIX4D identity = {{1.f, 0.f, 0.f, 0.f}, {0.f, 1.f, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; recurseFrame(m_rootFrame, identity); recurseChildren(m_rootFrame, identity); m_renderer->PushLights(lights.data(), lights.size()); m_renderer->PushVertices(verts.data(), verts.size()); m_renderer->SetBackbuffer(DDBackBuffer); return D3DRM_OK; } HRESULT Direct3DRMViewportImpl::Render(IDirect3DRMFrame* rootFrame) { if (!m_renderer) { return DDERR_GENERIC; } m_rootFrame = rootFrame; HRESULT success = CollectSceneData(); if (success != DD_OK) { return success; } return m_renderer->Render(); } HRESULT Direct3DRMViewportImpl::ForceUpdate(int x, int y, int w, int h) { MINIWIN_NOT_IMPLEMENTED(); return DD_OK; } HRESULT Direct3DRMViewportImpl::Clear() { if (!DDBackBuffer) { return DDERR_GENERIC; } uint8_t r = (m_backgroundColor >> 16) & 0xFF; uint8_t g = (m_backgroundColor >> 8) & 0xFF; uint8_t b = m_backgroundColor & 0xFF; Uint32 color = SDL_MapRGB(SDL_GetPixelFormatDetails(DDBackBuffer->format), nullptr, r, g, b); SDL_FillSurfaceRect(DDBackBuffer, NULL, color); return DD_OK; } HRESULT Direct3DRMViewportImpl::SetCamera(IDirect3DRMFrame* camera) { if (m_camera) { m_camera->Release(); } if (camera) { camera->AddRef(); } m_camera = camera; return DD_OK; } HRESULT Direct3DRMViewportImpl::GetCamera(IDirect3DRMFrame** camera) { if (m_camera) { m_camera->AddRef(); } *camera = m_camera; return DD_OK; } HRESULT Direct3DRMViewportImpl::SetProjection(D3DRMPROJECTIONTYPE type) { return DD_OK; } D3DRMPROJECTIONTYPE Direct3DRMViewportImpl::GetProjection() { return D3DRMPROJECTIONTYPE::PERSPECTIVE; } HRESULT Direct3DRMViewportImpl::SetFront(D3DVALUE z) { m_front = z; UpdateProjectionMatrix(); return DD_OK; } D3DVALUE Direct3DRMViewportImpl::GetFront() { return m_front; } HRESULT Direct3DRMViewportImpl::SetBack(D3DVALUE z) { m_back = z; UpdateProjectionMatrix(); return DD_OK; } D3DVALUE Direct3DRMViewportImpl::GetBack() { return m_back; } HRESULT Direct3DRMViewportImpl::SetField(D3DVALUE field) { m_field = field; UpdateProjectionMatrix(); return DD_OK; } void Direct3DRMViewportImpl::UpdateProjectionMatrix() { float aspect = (float) m_width / (float) m_height; float f = m_front / m_field; float depth = m_back - m_front; D3DRMMATRIX4D perspective = { {f, 0, 0, 0}, {0, f * aspect, 0, 0}, {0, 0, m_back / depth, 1}, {0, 0, (-m_front * m_back) / depth, 0}, }; m_renderer->SetProjection(perspective, m_front, m_back); } D3DVALUE Direct3DRMViewportImpl::GetField() { return m_field; } DWORD Direct3DRMViewportImpl::GetWidth() { return m_width; } DWORD Direct3DRMViewportImpl::GetHeight() { return m_height; } HRESULT Direct3DRMViewportImpl::Transform(D3DRMVECTOR4D* screen, D3DVECTOR* world) { MINIWIN_NOT_IMPLEMENTED(); return DD_OK; } HRESULT Direct3DRMViewportImpl::InverseTransform(D3DVECTOR* world, D3DRMVECTOR4D* screen) { MINIWIN_NOT_IMPLEMENTED(); return DD_OK; } struct Ray { D3DVECTOR origin; D3DVECTOR direction; }; // Ray-box intersection: slab method bool RayIntersectsBox(const Ray& ray, const D3DRMBOX& box, float& outT) { float tmin = -FLT_MAX; float tmax = FLT_MAX; for (int i = 0; i < 3; ++i) { float origin = (&ray.origin.x)[i]; float dir = (&ray.direction.x)[i]; float minB = (&box.min.x)[i]; float maxB = (&box.max.x)[i]; if (fabs(dir) < 1e-6f) { if (origin < minB || origin > maxB) { return false; } } else { float invD = 1.0f / dir; float t1 = (minB - origin) * invD; float t2 = (maxB - origin) * invD; if (t1 > t2) { std::swap(t1, t2); } if (t1 > tmin) { tmin = t1; } if (t2 < tmax) { tmax = t2; } if (tmin > tmax) { return false; } if (tmax < 0) { return false; } } } outT = tmin >= 0 ? tmin : tmax; // closest positive hit return true; } // Convert screen (x,y) in viewport to picking ray in world space Ray BuildPickingRay( float x, float y, int width, int height, IDirect3DRMFrame* camera, float front, float back, float field, float aspect ) { float nx = (2.0f * x) / width - 1.0f; float ny = 1.0f - (2.0f * y) / height; float f = front / field; // Ray in view space at near plane: D3DVECTOR rayDirView = {nx / f, ny / (f * aspect), 1.0f}; // Normalize ray direction float len = sqrt(rayDirView.x * rayDirView.x + rayDirView.y * rayDirView.y + rayDirView.z * rayDirView.z); rayDirView.x /= len; rayDirView.y /= len; rayDirView.z /= len; // Compute camera world matrix and invert it to get view->world D3DRMMATRIX4D cameraWorld; ComputeFrameWorldMatrix(camera, cameraWorld); // Transform ray origin (camera position) and direction to world space D3DVECTOR rayOriginWorld = {cameraWorld[3][0], cameraWorld[3][1], cameraWorld[3][2]}; // Multiply direction by rotation part of matrix only (3x3 upper-left) D3DVECTOR rayDirWorld = { rayDirView.x * cameraWorld[0][0] + rayDirView.y * cameraWorld[1][0] + rayDirView.z * cameraWorld[2][0], rayDirView.x * cameraWorld[0][1] + rayDirView.y * cameraWorld[1][1] + rayDirView.z * cameraWorld[2][1], rayDirView.x * cameraWorld[0][2] + rayDirView.y * cameraWorld[1][2] + rayDirView.z * cameraWorld[2][2] }; len = sqrt(rayDirWorld.x * rayDirWorld.x + rayDirWorld.y * rayDirWorld.y + rayDirWorld.z * rayDirWorld.z); rayDirWorld.x /= len; rayDirWorld.y /= len; rayDirWorld.z /= len; return Ray{rayOriginWorld, rayDirWorld}; } /** * @todo additionally check that we hit a triangle in the mesh */ HRESULT Direct3DRMViewportImpl::Pick(float x, float y, LPDIRECT3DRMPICKEDARRAY* pickedArray) { if (!m_rootFrame) { return DDERR_GENERIC; } std::vector hits; Ray pickRay = BuildPickingRay( x, y, m_width, m_height, m_camera, m_front, m_back, m_field, (float) m_width / (float) m_height ); std::function&)> recurse; recurse = [&](IDirect3DRMFrame* frame, std::vector& path) { Direct3DRMFrameImpl* frameImpl = static_cast(frame); path.push_back(frame); // Push current frame IDirect3DRMVisualArray* visuals = nullptr; if (SUCCEEDED(frame->GetVisuals(&visuals)) && visuals) { DWORD count = visuals->GetSize(); for (DWORD i = 0; i < count; ++i) { IDirect3DRMVisual* vis = nullptr; visuals->GetElement(i, &vis); IDirect3DRMMesh* mesh = nullptr; IDirect3DRMFrame* subFrame = nullptr; if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMFrame, (void**) &subFrame)) && subFrame) { recurse(subFrame, path); subFrame->Release(); } else if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMMesh, (void**) &mesh)) && mesh) { D3DRMBOX box; if (SUCCEEDED(mesh->GetBox(&box))) { // Transform box corners to world space D3DRMMATRIX4D worldMatrix; ComputeFrameWorldMatrix(frame, worldMatrix); // Transform box min and max points // Because axis-aligned box can become oriented box after transform, // but we simplify by transforming all 8 corners and computing new AABB D3DVECTOR corners[8] = { {box.min.x, box.min.y, box.min.z}, {box.min.x, box.min.y, box.max.z}, {box.min.x, box.max.y, box.min.z}, {box.min.x, box.max.y, box.max.z}, {box.max.x, box.min.y, box.min.z}, {box.max.x, box.min.y, box.max.z}, {box.max.x, box.max.y, box.min.z}, {box.max.x, box.max.y, box.max.z}, }; D3DRMBOX worldBox; { float x = corners[0].x * worldMatrix[0][0] + corners[0].y * worldMatrix[1][0] + corners[0].z * worldMatrix[2][0] + worldMatrix[3][0]; float y = corners[0].x * worldMatrix[0][1] + corners[0].y * worldMatrix[1][1] + corners[0].z * worldMatrix[2][1] + worldMatrix[3][1]; float z = corners[0].x * worldMatrix[0][2] + corners[0].y * worldMatrix[1][2] + corners[0].z * worldMatrix[2][2] + worldMatrix[3][2]; worldBox.min = {x, y, z}; worldBox.max = {x, y, z}; } for (int c = 1; c < 8; ++c) { float x = corners[c].x * worldMatrix[0][0] + corners[c].y * worldMatrix[1][0] + corners[c].z * worldMatrix[2][0] + worldMatrix[3][0]; float y = corners[c].x * worldMatrix[0][1] + corners[c].y * worldMatrix[1][1] + corners[c].z * worldMatrix[2][1] + worldMatrix[3][1]; float z = corners[c].x * worldMatrix[0][2] + corners[c].y * worldMatrix[1][2] + corners[c].z * worldMatrix[2][2] + worldMatrix[3][2]; if (x < worldBox.min.x) { worldBox.min.x = x; } if (y < worldBox.min.y) { worldBox.min.y = y; } if (z < worldBox.min.z) { worldBox.min.z = z; } if (x > worldBox.max.x) { worldBox.max.x = x; } if (y > worldBox.max.y) { worldBox.max.y = y; } if (z > worldBox.max.z) { worldBox.max.z = z; } } float distance = 0.0f; if (RayIntersectsBox(pickRay, worldBox, distance)) { auto* arr = new Direct3DRMFrameArrayImpl(); for (IDirect3DRMFrame* f : path) { arr->AddElement(f); } PickRecord rec; rec.visual = vis; rec.frameArray = arr; rec.desc.dist = distance; hits.push_back(rec); } } mesh->Release(); } vis->Release(); } visuals->Release(); } path.pop_back(); // Pop after recursion }; std::vector framePath; recurse(m_rootFrame, framePath); std::sort(hits.begin(), hits.end(), [](const PickRecord& a, const PickRecord& b) { return a.desc.dist < b.desc.dist; }); *pickedArray = new Direct3DRMPickedArrayImpl(hits.data(), hits.size()); return D3DRM_OK; } void Direct3DRMViewportImpl::CloseDevice() { m_renderer = nullptr; }