#include "SDL3/SDL_stdinc.h" #include "miniwin_d3drm_sdl3gpu.h" #include "miniwin_d3drmframe_sdl3gpu.h" #include "miniwin_d3drmviewport_sdl3gpu.h" #include "miniwin_p.h" #include #include #include #include #include typedef D3DVALUE Matrix3x3[3][3]; Direct3DRMViewport_SDL3GPUImpl::Direct3DRMViewport_SDL3GPUImpl( DWORD width, DWORD height, SDL_GPUDevice* device, SDL_GPUTexture* transferTexture, SDL_GPUTexture* depthTexture, SDL_GPUTransferBuffer* downloadTransferBuffer, SDL_GPUGraphicsPipeline* pipeline ) : m_width(width), m_height(height), m_device(device), m_transferTexture(transferTexture), m_depthTexture(depthTexture), m_downloadTransferBuffer(downloadTransferBuffer), m_pipeline(pipeline) { } void Direct3DRMViewport_SDL3GPUImpl::FreeDeviceResources() { SDL_ReleaseGPUBuffer(m_device, m_vertexBuffer); SDL_ReleaseGPUTexture(m_device, m_depthTexture); SDL_ReleaseGPUGraphicsPipeline(m_device, m_pipeline); } Direct3DRMViewport_SDL3GPUImpl::~Direct3DRMViewport_SDL3GPUImpl() { FreeDeviceResources(); } static void D3DRMMatrixMultiply(D3DRMMATRIX4D out, const D3DRMMATRIX4D a, const D3DRMMATRIX4D b) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { out[i][j] = 0.0f; for (int k = 0; k < 4; ++k) { out[i][j] += a[i][k] * b[k][j]; } } } } static D3DVALUE Cofactor3x3(const D3DRMMATRIX4D m, int i, int j) { int i1 = (i + 1) % 3; int i2 = (i + 1) % 3; int j1 = (j + 1) % 3; int j2 = (j + 1) % 3; return m[i1][j1] * m[i2][j2] - m[i2][j1] * m[i1][j2]; } static void D3DRMMatrixInvertForNormal(Matrix3x3 out, const D3DRMMATRIX4D m) { assert(m[3][3] == 1.f); float detM = m[0][0] * Cofactor3x3(m, 0, 0) - m[0][1] * Cofactor3x3(m, 0, 1) + m[0][2] * Cofactor3x3(m, 0, 2); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { out[i][j] = (((i + j) % 2) ? -1 : 1) * Cofactor3x3(m, i, j) / detM; } } } static void D3DRMMatrixInvertOrthogonal(D3DRMMATRIX4D out, const D3DRMMATRIX4D m) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { out[i][j] = m[j][i]; } } out[0][3] = out[1][3] = out[2][3] = 0.f; out[3][3] = 1.f; D3DVECTOR t = {m[3][0], m[3][1], m[3][2]}; out[3][0] = -(out[0][0] * t.x + out[1][0] * t.y + out[2][0] * t.z); out[3][1] = -(out[0][1] * t.x + out[1][1] * t.y + out[2][1] * t.z); out[3][2] = -(out[0][2] * t.x + out[1][2] * t.y + out[2][2] * t.z); } static void CalculateProjectionMatrix(D3DRMMATRIX4D Result, float field, float aspect, float near, float far) { float f = near / field; float depth = far - near; D3DRMMATRIX4D perspective = { {f, 0, 0, 0}, {0, f * aspect, 0, 0}, {0, 0, far / depth, 1}, {0, 0, (-near * far) / depth, 0}, }; memcpy(Result, &perspective, sizeof(D3DRMMATRIX4D)); } static void ComputeFrameWorldMatrix(IDirect3DRMFrame* frame, D3DRMMATRIX4D out) { D3DRMMATRIX4D acc = {{1.f, 0.f, 0.f, 0.f}, {0.f, 1.f, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; IDirect3DRMFrame* cur = frame; while (cur) { auto* impl = static_cast(cur); D3DRMMATRIX4D local; memcpy(local, impl->m_transform, sizeof(local)); D3DRMMATRIX4D tmp; D3DRMMatrixMultiply(tmp, local, acc); memcpy(acc, tmp, sizeof(acc)); if (cur == impl->m_parent) { break; } cur = impl->m_parent; } memcpy(out, acc, sizeof(acc)); } HRESULT Direct3DRMViewport_SDL3GPUImpl::CollectSceneData() { MINIWIN_NOT_IMPLEMENTED(); // Lights, camera, textures, materials std::vector verts; // Compute camera matrix D3DRMMATRIX4D cameraWorld, viewMatrix; ComputeFrameWorldMatrix(m_camera, cameraWorld); D3DRMMatrixInvertOrthogonal(viewMatrix, cameraWorld); std::function recurseFrame; recurseFrame = [&](IDirect3DRMFrame* frame, D3DRMMATRIX4D parentMatrix) { // Retrieve the current frame's transform Direct3DRMFrame_SDL3GPUImpl* frameImpl = static_cast(frame); D3DRMMATRIX4D localMatrix; memcpy(localMatrix, frameImpl->m_transform, sizeof(D3DRMMATRIX4D)); // Compute combined world matrix: world = parent * local D3DRMMATRIX4D worldMatrix; Matrix3x3 worldMatrixInvert; D3DRMMatrixMultiply(worldMatrix, parentMatrix, localMatrix); D3DRMMatrixInvertForNormal(worldMatrixInvert, worldMatrix); IDirect3DRMVisualArray* va = nullptr; if (SUCCEEDED(frame->GetVisuals(&va)) && va) { DWORD n = va->GetSize(); for (DWORD i = 0; i < n; ++i) { IDirect3DRMVisual* vis = nullptr; va->GetElement(i, &vis); if (!vis) { continue; } // Pull geometry from meshes IDirect3DRMMesh* mesh = nullptr; if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMMesh, (void**) &mesh)) && mesh) { DWORD groupCount = mesh->GetGroupCount(); for (DWORD gi = 0; gi < groupCount; ++gi) { DWORD vtxCount, faceCount, vpf, dataSize; mesh->GetGroup(gi, &vtxCount, &faceCount, &vpf, &dataSize, nullptr); std::vector d3dVerts(vtxCount); std::vector faces(faceCount * vpf); mesh->GetVertices(gi, 0, vtxCount, d3dVerts.data()); mesh->GetGroup(gi, &vtxCount, &faceCount, &vpf, nullptr, faces.data()); D3DCOLOR color = mesh->GetGroupColor(gi); for (DWORD fi = 0; fi < faceCount; ++fi) { for (int idx = 0; idx < vpf; ++idx) { auto& dv = d3dVerts[faces[fi * vpf + idx]]; // Apply world transform to the vertex D3DVECTOR pos = dv.position; D3DVECTOR norm = dv.normal; D3DVECTOR worldPos; worldPos.x = pos.x * worldMatrix[0][0] + pos.y * worldMatrix[1][0] + pos.z * worldMatrix[2][0] + worldMatrix[3][0]; worldPos.y = pos.x * worldMatrix[0][1] + pos.y * worldMatrix[1][1] + pos.z * worldMatrix[2][1] + worldMatrix[3][1]; worldPos.z = pos.x * worldMatrix[0][2] + pos.y * worldMatrix[1][2] + pos.z * worldMatrix[2][2] + worldMatrix[3][2]; // View transform D3DVECTOR viewPos; viewPos.x = worldPos.x * viewMatrix[0][0] + worldPos.y * viewMatrix[1][0] + worldPos.z * viewMatrix[2][0] + viewMatrix[3][0]; viewPos.y = worldPos.x * viewMatrix[0][1] + worldPos.y * viewMatrix[1][1] + worldPos.z * viewMatrix[2][1] + viewMatrix[3][1]; viewPos.z = worldPos.x * viewMatrix[0][2] + worldPos.y * viewMatrix[1][2] + worldPos.z * viewMatrix[2][2] + viewMatrix[3][2]; // View transform D3DVECTOR viewNorm; viewNorm.x = norm.x * worldMatrixInvert[0][0] + norm.y * worldMatrixInvert[1][0] + norm.z * worldMatrixInvert[2][0]; viewNorm.y = norm.x * worldMatrixInvert[0][1] + norm.y * worldMatrixInvert[1][1] + norm.z * worldMatrixInvert[2][1]; viewNorm.z = norm.x * worldMatrixInvert[0][2] + norm.y * worldMatrixInvert[1][2] + norm.z * worldMatrixInvert[2][2]; PositionColorVertex vtx; vtx.x = viewPos.x; vtx.y = viewPos.y; vtx.z = viewPos.z; vtx.nx = viewNorm.x; vtx.ny = viewNorm.y; vtx.nz = viewNorm.z; vtx.r = (color >> 16) & 0xFF; vtx.g = (color >> 8) & 0xFF; vtx.b = (color >> 0) & 0xFF; vtx.a = (color >> 24) & 0xFF; verts.push_back(vtx); } } } mesh->Release(); } // Recurse into child frames IDirect3DRMFrame* childFrame = nullptr; if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMFrame, (void**) &childFrame)) && childFrame) { recurseFrame(childFrame, worldMatrix); childFrame->Release(); } vis->Release(); } va->Release(); } }; D3DRMMATRIX4D identity = {{1.f, 0.f, 0.f, 0.f}, {0.f, 1.f, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; recurseFrame(m_rootFrame, identity); PushVertices(verts.data(), verts.size()); CalculateProjectionMatrix(m_uniforms.perspective, m_field, (float) m_width / (float) m_height, m_front, m_back); return D3DRM_OK; } void Direct3DRMViewport_SDL3GPUImpl::PushVertices(const PositionColorVertex* vertices, size_t count) { if (count > m_vertexBufferCount) { if (m_vertexBuffer) { SDL_ReleaseGPUBuffer(m_device, m_vertexBuffer); } SDL_GPUBufferCreateInfo bufferCreateInfo = {}; bufferCreateInfo.usage = SDL_GPU_BUFFERUSAGE_VERTEX; bufferCreateInfo.size = static_cast(sizeof(PositionColorVertex) * count); m_vertexBuffer = SDL_CreateGPUBuffer(m_device, &bufferCreateInfo); if (!m_vertexBuffer) { SDL_LogError(LOG_CATEGORY_MINIWIN, "SDL_CreateGPUBuffer returned NULL buffer (%s)", SDL_GetError()); } m_vertexBufferCount = count; } m_vertexCount = count; if (!count) { return; } SDL_GPUTransferBufferCreateInfo transferCreateInfo = {}; transferCreateInfo.usage = SDL_GPU_TRANSFERBUFFERUSAGE_UPLOAD; transferCreateInfo.size = static_cast(sizeof(PositionColorVertex) * m_vertexCount); SDL_GPUTransferBuffer* transferBuffer = SDL_CreateGPUTransferBuffer(m_device, &transferCreateInfo); if (!transferBuffer) { SDL_LogError( LOG_CATEGORY_MINIWIN, "SDL_CreateGPUTransferBuffer returned NULL transfer buffer (%s)", SDL_GetError() ); } PositionColorVertex* transferData = (PositionColorVertex*) SDL_MapGPUTransferBuffer(m_device, transferBuffer, false); if (!transferData) { SDL_LogError(LOG_CATEGORY_MINIWIN, "SDL_MapGPUTransferBuffer returned NULL buffer (%s)", SDL_GetError()); } memcpy(transferData, vertices, m_vertexCount * sizeof(PositionColorVertex)); SDL_UnmapGPUTransferBuffer(m_device, transferBuffer); // Upload the transfer data to the vertex buffer SDL_GPUCommandBuffer* uploadCmdBuf = SDL_AcquireGPUCommandBuffer(m_device); SDL_GPUCopyPass* copyPass = SDL_BeginGPUCopyPass(uploadCmdBuf); SDL_GPUTransferBufferLocation transferLocation = {}; transferLocation.transfer_buffer = transferBuffer; transferLocation.offset = 0; SDL_GPUBufferRegion bufferRegion = {}; bufferRegion.buffer = m_vertexBuffer; bufferRegion.offset = 0; bufferRegion.size = static_cast(sizeof(PositionColorVertex) * m_vertexCount); SDL_UploadToGPUBuffer(copyPass, &transferLocation, &bufferRegion, false); SDL_EndGPUCopyPass(copyPass); if (!SDL_SubmitGPUCommandBuffer(uploadCmdBuf)) { SDL_LogError(LOG_CATEGORY_MINIWIN, "SDL_SubmitGPUCommandBuffer failes (%s)", SDL_GetError()); } SDL_ReleaseGPUTransferBuffer(m_device, transferBuffer); } HRESULT Direct3DRMViewport_SDL3GPUImpl::Render(IDirect3DRMFrame* rootFrame) { if (!m_device) { return DDERR_GENERIC; } m_rootFrame = rootFrame; HRESULT success = CollectSceneData(); if (success != DD_OK) { return success; } SDL_GPUCommandBuffer* cmdbuf = SDL_AcquireGPUCommandBuffer(m_device); if (cmdbuf == NULL) { SDL_LogError(LOG_CATEGORY_MINIWIN, "SDL_AcquireGPUCommandBuffer failed (%s)", SDL_GetError()); return DDERR_GENERIC; } // Render the graphics SDL_GPUColorTargetInfo colorTargetInfo = {}; colorTargetInfo.texture = m_transferTexture; // Make the render target transparent so we can combine it with the back buffer colorTargetInfo.clear_color = {0, 0, 0, 0}; colorTargetInfo.load_op = SDL_GPU_LOADOP_CLEAR; SDL_GPUDepthStencilTargetInfo depthStencilTargetInfo = {}; depthStencilTargetInfo.texture = m_depthTexture; depthStencilTargetInfo.clear_depth = 0.f; depthStencilTargetInfo.clear_stencil = 0; depthStencilTargetInfo.load_op = SDL_GPU_LOADOP_CLEAR; depthStencilTargetInfo.store_op = SDL_GPU_STOREOP_STORE; depthStencilTargetInfo.stencil_load_op = SDL_GPU_LOADOP_CLEAR; depthStencilTargetInfo.stencil_store_op = SDL_GPU_STOREOP_STORE; SDL_GPURenderPass* renderPass = SDL_BeginGPURenderPass(cmdbuf, &colorTargetInfo, 1, &depthStencilTargetInfo); SDL_BindGPUGraphicsPipeline(renderPass, m_pipeline); SDL_PushGPUVertexUniformData(cmdbuf, 0, &m_uniforms, sizeof(m_uniforms)); if (m_vertexCount) { SDL_GPUBufferBinding vertexBufferBinding = {}; vertexBufferBinding.buffer = m_vertexBuffer; vertexBufferBinding.offset = 0; SDL_BindGPUVertexBuffers(renderPass, 0, &vertexBufferBinding, 1); SDL_DrawGPUPrimitives(renderPass, m_vertexCount, 1, 0, 0); } SDL_EndGPURenderPass(renderPass); // Download rendered image SDL_GPUCopyPass* copyPass = SDL_BeginGPUCopyPass(cmdbuf); SDL_GPUTextureRegion region = {}; region.texture = m_transferTexture; region.w = DDBackBuffer_SDL3GPU->w; region.h = DDBackBuffer_SDL3GPU->h; region.d = 1; SDL_GPUTextureTransferInfo transferInfo = {}; transferInfo.transfer_buffer = m_downloadTransferBuffer; transferInfo.offset = 0; SDL_DownloadFromGPUTexture(copyPass, ®ion, &transferInfo); SDL_EndGPUCopyPass(copyPass); SDL_GPUFence* fence = SDL_SubmitGPUCommandBufferAndAcquireFence(cmdbuf); if (!SDL_WaitForGPUFences(m_device, true, &fence, 1)) { return DDERR_GENERIC; } SDL_ReleaseGPUFence(m_device, fence); void* downloadedData = SDL_MapGPUTransferBuffer(m_device, m_downloadTransferBuffer, false); if (!downloadedData) { return DDERR_GENERIC; } SDL_DestroySurface(m_renderedImage); m_renderedImage = SDL_CreateSurfaceFrom( DDBackBuffer_SDL3GPU->w, DDBackBuffer_SDL3GPU->h, SDL_PIXELFORMAT_ABGR8888, downloadedData, DDBackBuffer_SDL3GPU->w * 4 ); SDL_Surface* convertedRender = SDL_ConvertSurface(m_renderedImage, SDL_PIXELFORMAT_RGBA8888); SDL_DestroySurface(m_renderedImage); SDL_UnmapGPUTransferBuffer(m_device, m_downloadTransferBuffer); m_renderedImage = convertedRender; return ForceUpdate(0, 0, DDBackBuffer_SDL3GPU->w, DDBackBuffer_SDL3GPU->h); } HRESULT Direct3DRMViewport_SDL3GPUImpl::ForceUpdate(int x, int y, int w, int h) { if (!m_renderedImage) { return DDERR_GENERIC; } // Blit the render back to our backbuffer SDL_Rect srcRect{0, 0, DDBackBuffer_SDL3GPU->w, DDBackBuffer_SDL3GPU->h}; const SDL_PixelFormatDetails* details = SDL_GetPixelFormatDetails(DDBackBuffer_SDL3GPU->format); if (details->Amask != 0) { // Backbuffer supports transparnacy SDL_Surface* convertedRender = SDL_ConvertSurface(m_renderedImage, DDBackBuffer_SDL3GPU->format); SDL_DestroySurface(m_renderedImage); m_renderedImage = convertedRender; return DD_OK; } if (m_renderedImage->format == DDBackBuffer_SDL3GPU->format) { // No conversion needed SDL_BlitSurface(m_renderedImage, &srcRect, DDBackBuffer_SDL3GPU, &srcRect); return DD_OK; } // Convert backbuffer to a format that supports transparancy SDL_Surface* tempBackbuffer = SDL_ConvertSurface(DDBackBuffer_SDL3GPU, m_renderedImage->format); SDL_BlitSurface(m_renderedImage, &srcRect, tempBackbuffer, &srcRect); // Then convert the result back to the backbuffer format and write it back SDL_Surface* newBackBuffer = SDL_ConvertSurface(tempBackbuffer, DDBackBuffer_SDL3GPU->format); SDL_DestroySurface(tempBackbuffer); SDL_BlitSurface(newBackBuffer, &srcRect, DDBackBuffer_SDL3GPU, &srcRect); SDL_DestroySurface(newBackBuffer); return DD_OK; } HRESULT Direct3DRMViewport_SDL3GPUImpl::Clear() { if (!DDBackBuffer_SDL3GPU) { return DDERR_GENERIC; } uint8_t r = (m_backgroundColor >> 16) & 0xFF; uint8_t g = (m_backgroundColor >> 8) & 0xFF; uint8_t b = m_backgroundColor & 0xFF; Uint32 color = SDL_MapRGB(SDL_GetPixelFormatDetails(DDBackBuffer_SDL3GPU->format), nullptr, r, g, b); SDL_FillSurfaceRect(DDBackBuffer_SDL3GPU, NULL, color); return DD_OK; } HRESULT Direct3DRMViewport_SDL3GPUImpl::SetCamera(IDirect3DRMFrame* camera) { if (m_camera) { m_camera->Release(); } if (camera) { camera->AddRef(); } m_camera = camera; return DD_OK; } HRESULT Direct3DRMViewport_SDL3GPUImpl::GetCamera(IDirect3DRMFrame** camera) { if (m_camera) { m_camera->AddRef(); } *camera = m_camera; return DD_OK; } HRESULT Direct3DRMViewport_SDL3GPUImpl::SetProjection(D3DRMPROJECTIONTYPE type) { return DD_OK; } D3DRMPROJECTIONTYPE Direct3DRMViewport_SDL3GPUImpl::GetProjection() { return D3DRMPROJECTIONTYPE::PERSPECTIVE; } HRESULT Direct3DRMViewport_SDL3GPUImpl::SetFront(D3DVALUE z) { m_front = z; return DD_OK; } D3DVALUE Direct3DRMViewport_SDL3GPUImpl::GetFront() { return m_front; } HRESULT Direct3DRMViewport_SDL3GPUImpl::SetBack(D3DVALUE z) { m_back = z; return DD_OK; } D3DVALUE Direct3DRMViewport_SDL3GPUImpl::GetBack() { return m_back; } HRESULT Direct3DRMViewport_SDL3GPUImpl::SetField(D3DVALUE field) { m_field = field; return DD_OK; } D3DVALUE Direct3DRMViewport_SDL3GPUImpl::GetField() { return m_field; } DWORD Direct3DRMViewport_SDL3GPUImpl::GetWidth() { return m_width; } DWORD Direct3DRMViewport_SDL3GPUImpl::GetHeight() { return m_height; } HRESULT Direct3DRMViewport_SDL3GPUImpl::Transform(D3DRMVECTOR4D* screen, D3DVECTOR* world) { MINIWIN_NOT_IMPLEMENTED(); return DD_OK; } HRESULT Direct3DRMViewport_SDL3GPUImpl::InverseTransform(D3DVECTOR* world, D3DRMVECTOR4D* screen) { MINIWIN_NOT_IMPLEMENTED(); return DD_OK; } struct Ray { D3DVECTOR origin; D3DVECTOR direction; }; // Ray-box intersection: slab method bool RayIntersectsBox(const Ray& ray, const D3DRMBOX& box, float& outT) { float tmin = -FLT_MAX; float tmax = FLT_MAX; for (int i = 0; i < 3; ++i) { float origin = (&ray.origin.x)[i]; float dir = (&ray.direction.x)[i]; float minB = (&box.min.x)[i]; float maxB = (&box.max.x)[i]; if (fabs(dir) < 1e-6f) { if (origin < minB || origin > maxB) { return false; } } else { float invD = 1.0f / dir; float t1 = (minB - origin) * invD; float t2 = (maxB - origin) * invD; if (t1 > t2) { std::swap(t1, t2); } if (t1 > tmin) { tmin = t1; } if (t2 < tmax) { tmax = t2; } if (tmin > tmax) { return false; } if (tmax < 0) { return false; } } } outT = tmin >= 0 ? tmin : tmax; // closest positive hit return true; } // Convert screen (x,y) in viewport to picking ray in world space Ray BuildPickingRay( float x, float y, int width, int height, IDirect3DRMFrame* camera, float front, float back, float field, float aspect ) { float nx = (2.0f * x) / width - 1.0f; float ny = 1.0f - (2.0f * y) / height; // flip Y since screen Y down D3DRMMATRIX4D proj; CalculateProjectionMatrix(proj, field, aspect, front, back); float f = front / field; // Ray in view space at near plane: D3DVECTOR rayDirView = {nx / f, ny / (f * aspect), 1.0f}; // Normalize ray direction float len = sqrt(rayDirView.x * rayDirView.x + rayDirView.y * rayDirView.y + rayDirView.z * rayDirView.z); rayDirView.x /= len; rayDirView.y /= len; rayDirView.z /= len; // Compute camera world matrix and invert it to get view->world D3DRMMATRIX4D cameraWorld; ComputeFrameWorldMatrix(camera, cameraWorld); // Transform ray origin (camera position) and direction to world space D3DVECTOR rayOriginWorld = {cameraWorld[3][0], cameraWorld[3][1], cameraWorld[3][2]}; // Multiply direction by rotation part of matrix only (3x3 upper-left) D3DVECTOR rayDirWorld = { rayDirView.x * cameraWorld[0][0] + rayDirView.y * cameraWorld[1][0] + rayDirView.z * cameraWorld[2][0], rayDirView.x * cameraWorld[0][1] + rayDirView.y * cameraWorld[1][1] + rayDirView.z * cameraWorld[2][1], rayDirView.x * cameraWorld[0][2] + rayDirView.y * cameraWorld[1][2] + rayDirView.z * cameraWorld[2][2] }; len = sqrt(rayDirWorld.x * rayDirWorld.x + rayDirWorld.y * rayDirWorld.y + rayDirWorld.z * rayDirWorld.z); rayDirWorld.x /= len; rayDirWorld.y /= len; rayDirWorld.z /= len; return Ray{rayOriginWorld, rayDirWorld}; } /** * @todo additionally check that we hit a triangle in the mesh */ HRESULT Direct3DRMViewport_SDL3GPUImpl::Pick(float x, float y, LPDIRECT3DRMPICKEDARRAY* pickedArray) { if (!m_rootFrame) { return DDERR_GENERIC; } std::vector hits; Ray pickRay = BuildPickingRay( x, y, m_width, m_height, m_camera, m_front, m_back, m_field, (float) m_width / (float) m_height ); std::function&)> recurse; recurse = [&](IDirect3DRMFrame* frame, std::vector& path) { Direct3DRMFrame_SDL3GPUImpl* frameImpl = static_cast(frame); path.push_back(frame); // Push current frame IDirect3DRMVisualArray* visuals = nullptr; if (SUCCEEDED(frame->GetVisuals(&visuals)) && visuals) { DWORD count = visuals->GetSize(); for (DWORD i = 0; i < count; ++i) { IDirect3DRMVisual* vis = nullptr; visuals->GetElement(i, &vis); IDirect3DRMMesh* mesh = nullptr; IDirect3DRMFrame* subFrame = nullptr; if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMFrame, (void**) &subFrame)) && subFrame) { recurse(subFrame, path); subFrame->Release(); } else if (SUCCEEDED(vis->QueryInterface(IID_IDirect3DRMMesh, (void**) &mesh)) && mesh) { D3DRMBOX box; if (SUCCEEDED(mesh->GetBox(&box))) { // Transform box corners to world space D3DRMMATRIX4D worldMatrix; ComputeFrameWorldMatrix(frame, worldMatrix); // Transform box min and max points // Because axis-aligned box can become oriented box after transform, // but we simplify by transforming all 8 corners and computing new AABB D3DVECTOR corners[8] = { {box.min.x, box.min.y, box.min.z}, {box.min.x, box.min.y, box.max.z}, {box.min.x, box.max.y, box.min.z}, {box.min.x, box.max.y, box.max.z}, {box.max.x, box.min.y, box.min.z}, {box.max.x, box.min.y, box.max.z}, {box.max.x, box.max.y, box.min.z}, {box.max.x, box.max.y, box.max.z}, }; D3DRMBOX worldBox; { float x = corners[0].x * worldMatrix[0][0] + corners[0].y * worldMatrix[1][0] + corners[0].z * worldMatrix[2][0] + worldMatrix[3][0]; float y = corners[0].x * worldMatrix[0][1] + corners[0].y * worldMatrix[1][1] + corners[0].z * worldMatrix[2][1] + worldMatrix[3][1]; float z = corners[0].x * worldMatrix[0][2] + corners[0].y * worldMatrix[1][2] + corners[0].z * worldMatrix[2][2] + worldMatrix[3][2]; worldBox.min = {x, y, z}; worldBox.max = {x, y, z}; } for (int c = 1; c < 8; ++c) { float x = corners[c].x * worldMatrix[0][0] + corners[c].y * worldMatrix[1][0] + corners[c].z * worldMatrix[2][0] + worldMatrix[3][0]; float y = corners[c].x * worldMatrix[0][1] + corners[c].y * worldMatrix[1][1] + corners[c].z * worldMatrix[2][1] + worldMatrix[3][1]; float z = corners[c].x * worldMatrix[0][2] + corners[c].y * worldMatrix[1][2] + corners[c].z * worldMatrix[2][2] + worldMatrix[3][2]; if (x < worldBox.min.x) { worldBox.min.x = x; } if (y < worldBox.min.y) { worldBox.min.y = y; } if (z < worldBox.min.z) { worldBox.min.z = z; } if (x > worldBox.max.x) { worldBox.max.x = x; } if (y > worldBox.max.y) { worldBox.max.y = y; } if (z > worldBox.max.z) { worldBox.max.z = z; } } float distance = 0.0f; if (RayIntersectsBox(pickRay, worldBox, distance)) { auto* arr = new Direct3DRMFrameArray_SDL3GPUImpl(); for (IDirect3DRMFrame* f : path) { arr->AddElement(f); } PickRecord rec; rec.visual = vis; rec.frameArray = arr; rec.desc.dist = distance; hits.push_back(rec); } } mesh->Release(); } vis->Release(); } visuals->Release(); } path.pop_back(); // Pop after recursion }; std::vector framePath; recurse(m_rootFrame, framePath); std::sort(hits.begin(), hits.end(), [](const PickRecord& a, const PickRecord& b) { return a.desc.dist < b.desc.dist; }); *pickedArray = new Direct3DRMPickedArray_SDL3GPUImpl(hits.data(), hits.size()); return D3DRM_OK; } void Direct3DRMViewport_SDL3GPUImpl::CloseDevice() { FreeDeviceResources(); m_device = nullptr; }