#include "d3drmrenderer_opengles2.h" #include "meshutils.h" #include #include #include #include #include static GLuint CompileShader(GLenum type, const char* source) { GLuint shader = glCreateShader(type); glShaderSource(shader, 1, &source, nullptr); glCompileShader(shader); GLint success; glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (!success) { glDeleteShader(shader); SDL_Log("CompileShader (%s)", SDL_GetError()); return 0; } return shader; } struct SceneLightGLES2 { float color[4]; float position[4]; float direction[4]; }; Direct3DRMRenderer* OpenGLES2Renderer::Create(DWORD width, DWORD height) { SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_ES); SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 2); SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 0); SDL_Window* window = DDWindow; bool testWindow = false; if (!window) { window = SDL_CreateWindow("OpenGL ES 2.0 test", width, height, SDL_WINDOW_HIDDEN | SDL_WINDOW_OPENGL); testWindow = true; } SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24); SDL_GLContext context = SDL_GL_CreateContext(window); if (!context) { if (testWindow) { SDL_DestroyWindow(window); } return nullptr; } if (!SDL_GL_MakeCurrent(window, context)) { if (testWindow) { SDL_DestroyWindow(window); } return nullptr; } glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); glFrontFace(GL_CW); const char* vertexShaderSource = R"( attribute vec3 a_position; attribute vec3 a_normal; attribute vec2 a_texCoord; uniform mat4 u_modelViewMatrix; uniform mat3 u_normalMatrix; uniform mat4 u_projectionMatrix; varying vec3 v_viewPos; varying vec3 v_normal; varying vec2 v_texCoord; void main() { vec4 viewPos = u_modelViewMatrix * vec4(a_position, 1.0); gl_Position = u_projectionMatrix * viewPos; v_viewPos = viewPos.xyz; v_normal = normalize(u_normalMatrix * a_normal); v_texCoord = a_texCoord; } )"; const char* fragmentShaderSource = R"( precision mediump float; struct SceneLight { vec4 color; vec4 position; vec4 direction; }; uniform SceneLight u_lights[3]; uniform int u_lightCount; varying vec3 v_viewPos; varying vec3 v_normal; varying vec2 v_texCoord; uniform float u_shininess; uniform vec4 u_color; uniform int u_useTexture; uniform sampler2D u_texture; void main() { vec3 diffuse = vec3(0.0); vec3 specular = vec3(0.0); for (int i = 0; i < 3; ++i) { if (i >= u_lightCount) break; vec3 lightColor = u_lights[i].color.rgb; if (u_lights[i].position.w == 0.0 && u_lights[i].direction.w == 0.0) { diffuse += lightColor; continue; } vec3 lightVec; if (u_lights[i].direction.w == 1.0) { lightVec = -normalize(u_lights[i].direction.xyz); } else { lightVec = u_lights[i].position.xyz - v_viewPos; } lightVec = normalize(lightVec); float dotNL = max(dot(v_normal, lightVec), 0.0); if (dotNL > 0.0) { // Diffuse contribution diffuse += dotNL * lightColor; // Specular if (u_shininess > 0.0 && u_lights[i].direction.w == 1.0) { vec3 viewVec = normalize(-v_viewPos); // Assuming camera at origin vec3 H = normalize(lightVec + viewVec); float dotNH = max(dot(v_normal, H), 0.0); float spec = pow(dotNH, u_shininess); specular += spec * lightColor; } } } vec4 finalColor = u_color; finalColor.rgb = clamp(diffuse * u_color.rgb + specular, 0.0, 1.0); if (u_useTexture != 0) { vec4 texel = texture2D(u_texture, v_texCoord); finalColor.rgb = clamp(texel.rgb * finalColor.rgb, 0.0, 1.0); finalColor.a = texel.a; } gl_FragColor = finalColor; } )"; GLuint vs = CompileShader(GL_VERTEX_SHADER, vertexShaderSource); GLuint fs = CompileShader(GL_FRAGMENT_SHADER, fragmentShaderSource); GLuint shaderProgram = glCreateProgram(); glAttachShader(shaderProgram, vs); glAttachShader(shaderProgram, fs); glBindAttribLocation(shaderProgram, 0, "a_position"); glBindAttribLocation(shaderProgram, 1, "a_normal"); glBindAttribLocation(shaderProgram, 2, "a_texCoord"); glLinkProgram(shaderProgram); glDeleteShader(vs); glDeleteShader(fs); if (testWindow) { SDL_DestroyWindow(window); } return new OpenGLES2Renderer(width, height, context, shaderProgram); } OpenGLES2Renderer::OpenGLES2Renderer(DWORD width, DWORD height, SDL_GLContext context, GLuint shaderProgram) : m_context(context), m_shaderProgram(shaderProgram) { m_width = width; m_height = height; m_virtualWidth = width; m_virtualHeight = height; m_renderedImage = SDL_CreateSurface(m_width, m_height, SDL_PIXELFORMAT_RGBA32); } OpenGLES2Renderer::~OpenGLES2Renderer() { SDL_DestroySurface(m_renderedImage); glDeleteProgram(m_shaderProgram); } void OpenGLES2Renderer::PushLights(const SceneLight* lightsArray, size_t count) { if (count > 3) { SDL_Log("Unsupported number of lights (%d)", static_cast(count)); count = 3; } m_lights.assign(lightsArray, lightsArray + count); } void OpenGLES2Renderer::SetFrustumPlanes(const Plane* frustumPlanes) { } void OpenGLES2Renderer::SetProjection(const D3DRMMATRIX4D& projection, D3DVALUE front, D3DVALUE back) { memcpy(&m_projection, projection, sizeof(D3DRMMATRIX4D)); } struct TextureDestroyContextGLS2 { OpenGLES2Renderer* renderer; Uint32 textureId; }; void OpenGLES2Renderer::AddTextureDestroyCallback(Uint32 id, IDirect3DRMTexture* texture) { auto* ctx = new TextureDestroyContextGLS2{this, id}; texture->AddDestroyCallback( [](IDirect3DRMObject* obj, void* arg) { auto* ctx = static_cast(arg); auto& cache = ctx->renderer->m_textures[ctx->textureId]; if (cache.glTextureId != 0) { glDeleteTextures(1, &cache.glTextureId); cache.glTextureId = 0; cache.texture = nullptr; } delete ctx; }, ctx ); } Uint32 OpenGLES2Renderer::GetTextureId(IDirect3DRMTexture* iTexture) { auto texture = static_cast(iTexture); auto surface = static_cast(texture->m_surface); for (Uint32 i = 0; i < m_textures.size(); ++i) { auto& tex = m_textures[i]; if (tex.texture == texture) { if (tex.version != texture->m_version) { glDeleteTextures(1, &tex.glTextureId); glGenTextures(1, &tex.glTextureId); glBindTexture(GL_TEXTURE_2D, tex.glTextureId); SDL_Surface* surf = SDL_ConvertSurface(surface->m_surface, SDL_PIXELFORMAT_RGBA32); if (!surf) { return NO_TEXTURE_ID; } glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, surf->w, surf->h, 0, GL_RGBA, GL_UNSIGNED_BYTE, surf->pixels); SDL_DestroySurface(surf); tex.version = texture->m_version; } return i; } } GLuint texId; glGenTextures(1, &texId); glBindTexture(GL_TEXTURE_2D, texId); SDL_Surface* surf = SDL_ConvertSurface(surface->m_surface, SDL_PIXELFORMAT_RGBA32); if (!surf) { return NO_TEXTURE_ID; } glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, surf->w, surf->h, 0, GL_RGBA, GL_UNSIGNED_BYTE, surf->pixels); for (Uint32 i = 0; i < m_textures.size(); ++i) { auto& tex = m_textures[i]; if (!tex.texture) { tex.texture = texture; tex.version = texture->m_version; tex.glTextureId = texId; tex.width = surf->w; tex.height = surf->h; AddTextureDestroyCallback(i, texture); return i; } } m_textures.push_back({texture, texture->m_version, texId, (uint16_t) surf->w, (uint16_t) surf->h}); SDL_DestroySurface(surf); AddTextureDestroyCallback((Uint32) (m_textures.size() - 1), texture); return (Uint32) (m_textures.size() - 1); } GLES2MeshCacheEntry GLES2UploadMesh(const MeshGroup& meshGroup) { GLES2MeshCacheEntry cache{&meshGroup, meshGroup.version}; cache.flat = meshGroup.quality == D3DRMRENDER_FLAT || meshGroup.quality == D3DRMRENDER_UNLITFLAT; std::vector vertices; if (cache.flat) { FlattenSurfaces( meshGroup.vertices.data(), meshGroup.vertices.size(), meshGroup.indices.data(), meshGroup.indices.size(), meshGroup.texture != nullptr, vertices, cache.indices ); } else { vertices = meshGroup.vertices; cache.indices.resize(meshGroup.indices.size()); std::transform(meshGroup.indices.begin(), meshGroup.indices.end(), cache.indices.begin(), [](DWORD index) { return static_cast(index); }); } std::vector texcoords; if (meshGroup.texture) { texcoords.resize(vertices.size()); std::transform(vertices.begin(), vertices.end(), texcoords.begin(), [](const D3DRMVERTEX& v) { return v.texCoord; }); } std::vector positions(vertices.size()); std::transform(vertices.begin(), vertices.end(), positions.begin(), [](const D3DRMVERTEX& v) { return v.position; }); std::vector normals(vertices.size()); std::transform(vertices.begin(), vertices.end(), normals.begin(), [](const D3DRMVERTEX& v) { return v.normal; }); glGenBuffers(1, &cache.vboPositions); glBindBuffer(GL_ARRAY_BUFFER, cache.vboPositions); glBufferData(GL_ARRAY_BUFFER, positions.size() * sizeof(D3DVECTOR), positions.data(), GL_STATIC_DRAW); glGenBuffers(1, &cache.vboNormals); glBindBuffer(GL_ARRAY_BUFFER, cache.vboNormals); glBufferData(GL_ARRAY_BUFFER, normals.size() * sizeof(D3DVECTOR), normals.data(), GL_STATIC_DRAW); if (meshGroup.texture) { glGenBuffers(1, &cache.vboTexcoords); glBindBuffer(GL_ARRAY_BUFFER, cache.vboTexcoords); glBufferData(GL_ARRAY_BUFFER, texcoords.size() * sizeof(TexCoord), texcoords.data(), GL_STATIC_DRAW); } glGenBuffers(1, &cache.ibo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cache.ibo); glBufferData( GL_ELEMENT_ARRAY_BUFFER, cache.indices.size() * sizeof(cache.indices[0]), cache.indices.data(), GL_STATIC_DRAW ); return cache; } struct GLES2MeshDestroyContext { OpenGLES2Renderer* renderer; Uint32 id; }; void OpenGLES2Renderer::AddMeshDestroyCallback(Uint32 id, IDirect3DRMMesh* mesh) { auto* ctx = new GLES2MeshDestroyContext{this, id}; mesh->AddDestroyCallback( [](IDirect3DRMObject*, void* arg) { auto* ctx = static_cast(arg); auto& cache = ctx->renderer->m_meshs[ctx->id]; cache.meshGroup = nullptr; glDeleteBuffers(1, &cache.vboPositions); glDeleteBuffers(1, &cache.vboNormals); glDeleteBuffers(1, &cache.vboTexcoords); glDeleteBuffers(1, &cache.ibo); delete ctx; }, ctx ); } Uint32 OpenGLES2Renderer::GetMeshId(IDirect3DRMMesh* mesh, const MeshGroup* meshGroup) { for (Uint32 i = 0; i < m_meshs.size(); ++i) { auto& cache = m_meshs[i]; if (cache.meshGroup == meshGroup) { if (cache.version != meshGroup->version) { cache = std::move(GLES2UploadMesh(*meshGroup)); } return i; } } auto newCache = GLES2UploadMesh(*meshGroup); for (Uint32 i = 0; i < m_meshs.size(); ++i) { auto& cache = m_meshs[i]; if (!cache.meshGroup) { cache = std::move(newCache); AddMeshDestroyCallback(i, mesh); return i; } } m_meshs.push_back(std::move(newCache)); AddMeshDestroyCallback((Uint32) (m_meshs.size() - 1), mesh); return (Uint32) (m_meshs.size() - 1); } void OpenGLES2Renderer::GetDesc(D3DDEVICEDESC* halDesc, D3DDEVICEDESC* helDesc) { halDesc->dcmColorModel = D3DCOLORMODEL::RGB; halDesc->dwFlags = D3DDD_DEVICEZBUFFERBITDEPTH; halDesc->dwDeviceZBufferBitDepth = DDBD_16; const char* extensions = (const char*) glGetString(GL_EXTENSIONS); if (extensions) { if (strstr(extensions, "GL_OES_depth24")) { halDesc->dwDeviceZBufferBitDepth |= DDBD_24; } if (strstr(extensions, "GL_OES_depth32")) { halDesc->dwDeviceZBufferBitDepth |= DDBD_32; } } helDesc->dwDeviceRenderBitDepth = DDBD_32; halDesc->dpcTriCaps.dwTextureCaps = D3DPTEXTURECAPS_PERSPECTIVE; halDesc->dpcTriCaps.dwShadeCaps = D3DPSHADECAPS_ALPHAFLATBLEND; halDesc->dpcTriCaps.dwTextureFilterCaps = D3DPTFILTERCAPS_LINEAR; memset(helDesc, 0, sizeof(D3DDEVICEDESC)); } const char* OpenGLES2Renderer::GetName() { return "OpenGL ES 2.0 HAL"; } HRESULT OpenGLES2Renderer::BeginFrame() { m_dirty = true; glDisable(GL_BLEND); glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); glUseProgram(m_shaderProgram); SceneLightGLES2 lightData[3]; int lightCount = std::min(static_cast(m_lights.size()), 3); for (int i = 0; i < lightCount; ++i) { const auto& src = m_lights[i]; lightData[i].color[0] = src.color.r; lightData[i].color[1] = src.color.g; lightData[i].color[2] = src.color.b; lightData[i].color[3] = src.color.a; lightData[i].position[0] = src.position.x; lightData[i].position[1] = src.position.y; lightData[i].position[2] = src.position.z; lightData[i].position[3] = src.positional; lightData[i].direction[0] = src.direction.x; lightData[i].direction[1] = src.direction.y; lightData[i].direction[2] = src.direction.z; lightData[i].direction[3] = src.directional; } for (int i = 0; i < lightCount; ++i) { std::string base = "u_lights[" + std::to_string(i) + "]"; glUniform4fv(glGetUniformLocation(m_shaderProgram, (base + ".color").c_str()), 1, lightData[i].color); glUniform4fv(glGetUniformLocation(m_shaderProgram, (base + ".position").c_str()), 1, lightData[i].position); glUniform4fv(glGetUniformLocation(m_shaderProgram, (base + ".direction").c_str()), 1, lightData[i].direction); } glUniform1i(glGetUniformLocation(m_shaderProgram, "u_lightCount"), lightCount); return DD_OK; } void OpenGLES2Renderer::EnableTransparency() { glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDepthMask(GL_FALSE); } void OpenGLES2Renderer::SubmitDraw( DWORD meshId, const D3DRMMATRIX4D& modelViewMatrix, const D3DRMMATRIX4D& worldMatrix, const D3DRMMATRIX4D& viewMatrix, const Matrix3x3& normalMatrix, const Appearance& appearance ) { auto& mesh = m_meshs[meshId]; glUniformMatrix4fv(glGetUniformLocation(m_shaderProgram, "u_modelViewMatrix"), 1, GL_FALSE, &modelViewMatrix[0][0]); glUniformMatrix3fv(glGetUniformLocation(m_shaderProgram, "u_normalMatrix"), 1, GL_FALSE, &normalMatrix[0][0]); glUniformMatrix4fv(glGetUniformLocation(m_shaderProgram, "u_projectionMatrix"), 1, GL_FALSE, &m_projection[0][0]); glUniform4f( glGetUniformLocation(m_shaderProgram, "u_color"), appearance.color.r / 255.0f, appearance.color.g / 255.0f, appearance.color.b / 255.0f, appearance.color.a / 255.0f ); glUniform1f(glGetUniformLocation(m_shaderProgram, "u_shininess"), appearance.shininess); if (appearance.textureId != NO_TEXTURE_ID) { glUniform1i(glGetUniformLocation(m_shaderProgram, "u_useTexture"), 1); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, m_textures[appearance.textureId].glTextureId); glUniform1i(glGetUniformLocation(m_shaderProgram, "u_texture"), 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } else { glUniform1i(glGetUniformLocation(m_shaderProgram, "u_useTexture"), 0); } glBindBuffer(GL_ARRAY_BUFFER, mesh.vboPositions); GLint posLoc = glGetAttribLocation(m_shaderProgram, "a_position"); glEnableVertexAttribArray(posLoc); glVertexAttribPointer(posLoc, 3, GL_FLOAT, GL_FALSE, 0, nullptr); glBindBuffer(GL_ARRAY_BUFFER, mesh.vboNormals); GLint normLoc = glGetAttribLocation(m_shaderProgram, "a_normal"); glEnableVertexAttribArray(normLoc); glVertexAttribPointer(normLoc, 3, GL_FLOAT, GL_FALSE, 0, nullptr); GLint texLoc = glGetAttribLocation(m_shaderProgram, "a_texCoord"); if (appearance.textureId != NO_TEXTURE_ID) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboTexcoords); glEnableVertexAttribArray(texLoc); glVertexAttribPointer(texLoc, 2, GL_FLOAT, GL_FALSE, 0, nullptr); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.ibo); glDrawElements(GL_TRIANGLES, static_cast(mesh.indices.size()), GL_UNSIGNED_SHORT, nullptr); glDisableVertexAttribArray(posLoc); glDisableVertexAttribArray(normLoc); glDisableVertexAttribArray(texLoc); } HRESULT OpenGLES2Renderer::FinalizeFrame() { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glUseProgram(0); return DD_OK; } void OpenGLES2Renderer::Resize(int width, int height, const ViewportTransform& viewportTransform) { m_width = width; m_height = height; m_viewportTransform = viewportTransform; SDL_DestroySurface(m_renderedImage); m_renderedImage = SDL_CreateSurface(m_width, m_height, SDL_PIXELFORMAT_RGBA32); glViewport(0, 0, m_width, m_height); } void OpenGLES2Renderer::Clear(float r, float g, float b) { m_dirty = true; glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); glClearColor(r, g, b, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } void OpenGLES2Renderer::Flip() { if (m_dirty) { SDL_GL_SwapWindow(DDWindow); m_dirty = false; } } void CreateOrthoMatrix(float left, float right, float bottom, float top, D3DRMMATRIX4D& outMatrix) { float near = -1.0f; float far = 1.0f; float rl = right - left; float tb = top - bottom; float fn = far - near; outMatrix[0][0] = 2.0f / rl; outMatrix[0][1] = 0.0f; outMatrix[0][2] = 0.0f; outMatrix[0][3] = 0.0f; outMatrix[1][0] = 0.0f; outMatrix[1][1] = 2.0f / tb; outMatrix[1][2] = 0.0f; outMatrix[1][3] = 0.0f; outMatrix[2][0] = 0.0f; outMatrix[2][1] = 0.0f; outMatrix[2][2] = -2.0f / fn; outMatrix[2][3] = 0.0f; outMatrix[3][0] = -(right + left) / rl; outMatrix[3][1] = -(top + bottom) / tb; outMatrix[3][2] = -(far + near) / fn; outMatrix[3][3] = 1.0f; } void OpenGLES2Renderer::Draw2DImage(Uint32 textureId, const SDL_Rect& srcRect, const SDL_Rect& dstRect) { m_dirty = true; glDisable(GL_DEPTH_TEST); glDepthMask(GL_FALSE); glUseProgram(m_shaderProgram); float color[] = {1.0f, 1.0f, 1.0f, 1.0f}; float blank[] = {0.0f, 0.0f, 0.0f, 0.0f}; glUniform4fv(glGetUniformLocation(m_shaderProgram, "u_lights[0].color"), 1, color); glUniform4fv(glGetUniformLocation(m_shaderProgram, "u_lights[0].position"), 1, blank); glUniform4fv(glGetUniformLocation(m_shaderProgram, "u_lights[0].direction"), 1, blank); glUniform1i(glGetUniformLocation(m_shaderProgram, "u_lightCount"), 1); glUniform4f(glGetUniformLocation(m_shaderProgram, "u_color"), 1.0f, 1.0f, 1.0f, 1.0f); glUniform1f(glGetUniformLocation(m_shaderProgram, "u_shininess"), 0.0f); float left = -m_viewportTransform.offsetX / m_viewportTransform.scale; float right = (m_width - m_viewportTransform.offsetX) / m_viewportTransform.scale; float top = -m_viewportTransform.offsetY / m_viewportTransform.scale; float bottom = (m_height - m_viewportTransform.offsetY) / m_viewportTransform.scale; D3DRMMATRIX4D projection; CreateOrthoMatrix(left, right, bottom, top, projection); D3DRMMATRIX4D identity = {{1.f, 0.f, 0.f, 0.f}, {0.f, 1.f, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; glUniformMatrix4fv(glGetUniformLocation(m_shaderProgram, "u_modelViewMatrix"), 1, GL_FALSE, &identity[0][0]); glUniformMatrix3fv(glGetUniformLocation(m_shaderProgram, "u_normalMatrix"), 1, GL_FALSE, &identity[0][0]); glUniformMatrix4fv(glGetUniformLocation(m_shaderProgram, "u_projectionMatrix"), 1, GL_FALSE, &projection[0][0]); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glActiveTexture(GL_TEXTURE0); glUniform1i(glGetUniformLocation(m_shaderProgram, "u_useTexture"), 1); const GLES2TextureCacheEntry& texture = m_textures[textureId]; glBindTexture(GL_TEXTURE_2D, texture.glTextureId); glUniform1i(glGetUniformLocation(m_shaderProgram, "u_texture"), 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); float texW = texture.width; float texH = texture.height; float u1 = srcRect.x / texW; float v1 = srcRect.y / texH; float u2 = (srcRect.x + srcRect.w) / texW; float v2 = (srcRect.y + srcRect.h) / texH; float x1 = static_cast(dstRect.x); float y1 = static_cast(dstRect.y); float x2 = x1 + dstRect.w; float y2 = y1 + dstRect.h; GLfloat vertices[] = {x1, y1, u1, v1, x2, y1, u2, v1, x1, y2, u1, v2, x2, y2, u2, v2}; GLint posLoc = glGetAttribLocation(m_shaderProgram, "a_position"); GLint texLoc = glGetAttribLocation(m_shaderProgram, "a_texCoord"); glEnableVertexAttribArray(posLoc); glEnableVertexAttribArray(texLoc); glVertexAttribPointer(posLoc, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(GLfloat), vertices); glVertexAttribPointer(texLoc, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(GLfloat), vertices + 2); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glDisableVertexAttribArray(posLoc); glDisableVertexAttribArray(texLoc); glBindTexture(GL_TEXTURE_2D, 0); glUseProgram(0); } void OpenGLES2Renderer::Download(SDL_Surface* target) { glFinish(); glReadPixels(0, 0, m_width, m_height, GL_RGBA, GL_UNSIGNED_BYTE, m_renderedImage->pixels); SDL_Rect srcRect = { static_cast(m_viewportTransform.offsetX), static_cast(m_viewportTransform.offsetY), static_cast(target->w * m_viewportTransform.scale), static_cast(target->h * m_viewportTransform.scale), }; SDL_Surface* bufferClone = SDL_CreateSurface(target->w, target->h, SDL_PIXELFORMAT_RGBA32); if (!bufferClone) { SDL_Log("SDL_CreateSurface: %s", SDL_GetError()); return; } SDL_BlitSurfaceScaled(m_renderedImage, &srcRect, bufferClone, nullptr, SDL_SCALEMODE_NEAREST); // Flip image vertically into target SDL_Rect rowSrc = {0, 0, bufferClone->w, 1}; SDL_Rect rowDst = {0, 0, bufferClone->w, 1}; for (int y = 0; y < bufferClone->h; ++y) { rowSrc.y = y; rowDst.y = bufferClone->h - 1 - y; SDL_BlitSurface(bufferClone, &rowSrc, target, &rowDst); } SDL_DestroySurface(bufferClone); }