#include "d3drm_impl.h" #include "d3drmframe_impl.h" #include "d3drmrenderer.h" #include "d3drmviewport_impl.h" #include "ddraw_impl.h" #include "mathutils.h" #include "miniwin.h" #include #include #include #include #include #include Direct3DRMViewportImpl::Direct3DRMViewportImpl(DWORD width, DWORD height, Direct3DRMRenderer* rendere) : m_width(width), m_height(height), m_renderer(rendere) { } static void D3DRMMatrixMultiply(D3DRMMATRIX4D out, const D3DRMMATRIX4D a, const D3DRMMATRIX4D b) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { out[i][j] = 0.0f; for (int k = 0; k < 4; ++k) { out[i][j] += a[i][k] * b[k][j]; } } } } static void D3DRMMatrixInvertForNormal(Matrix3x3 out, const D3DRMMATRIX4D m) { float a = m[0][0], b = m[0][1], c = m[0][2]; float d = m[1][0], e = m[1][1], f = m[1][2]; float g = m[2][0], h = m[2][1], i = m[2][2]; float det = a * (e * i - f * h) - b * (d * i - f * g) + c * (d * h - e * g); if (fabs(det) < 1e-6f) { memset(out, 0, sizeof(Matrix3x3)); return; } float invDet = 1.0f / det; out[0][0] = (e * i - f * h) * invDet; out[1][0] = (c * h - b * i) * invDet; out[2][0] = (b * f - c * e) * invDet; out[0][1] = (f * g - d * i) * invDet; out[1][1] = (a * i - c * g) * invDet; out[2][1] = (c * d - a * f) * invDet; out[0][2] = (d * h - e * g) * invDet; out[1][2] = (b * g - a * h) * invDet; out[2][2] = (a * e - b * d) * invDet; } static void D3DRMMatrixInvertOrthogonal(D3DRMMATRIX4D out, const D3DRMMATRIX4D m) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { out[i][j] = m[j][i]; } } out[0][3] = out[1][3] = out[2][3] = 0.f; out[3][3] = 1.f; D3DVECTOR t = {m[3][0], m[3][1], m[3][2]}; out[3][0] = -(out[0][0] * t.x + out[1][0] * t.y + out[2][0] * t.z); out[3][1] = -(out[0][1] * t.x + out[1][1] * t.y + out[2][1] * t.z); out[3][2] = -(out[0][2] * t.x + out[1][2] * t.y + out[2][2] * t.z); } static void ComputeFrameWorldMatrix(IDirect3DRMFrame* frame, D3DRMMATRIX4D out) { D3DRMMATRIX4D acc = {{1.f, 0.f, 0.f, 0.f}, {0.f, 1.f, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; IDirect3DRMFrame* cur = frame; while (cur) { auto* impl = static_cast(cur); D3DRMMATRIX4D tmp; D3DRMMatrixMultiply(tmp, impl->m_transform, acc); memcpy(acc, tmp, sizeof(acc)); if (cur == impl->m_parent) { break; } cur = impl->m_parent; } memcpy(out, acc, sizeof(acc)); } inline D3DVECTOR CrossProduct(const D3DVECTOR& a, const D3DVECTOR& b) { return {a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x}; } D3DVECTOR ComputeTriangleNormal(const D3DVECTOR& v0, const D3DVECTOR& v1, const D3DVECTOR& v2) { D3DVECTOR u = {v1.x - v0.x, v1.y - v0.y, v1.z - v0.z}; D3DVECTOR v = {v2.x - v0.x, v2.y - v0.y, v2.z - v0.z}; D3DVECTOR normal = CrossProduct(u, v); normal = Normalize(normal); return normal; } void Direct3DRMViewportImpl::CollectLightsFromFrame( IDirect3DRMFrame* frame, D3DRMMATRIX4D parentToWorld, std::vector& lights ) { auto* frameImpl = static_cast(frame); D3DRMMATRIX4D worldMatrix; D3DRMMatrixMultiply(worldMatrix, parentToWorld, frameImpl->m_transform); IDirect3DRMLightArray* lightArray = nullptr; frame->GetLights(&lightArray); DWORD lightCount = lightArray->GetSize(); for (DWORD li = 0; li < lightCount; ++li) { IDirect3DRMLight* light = nullptr; lightArray->GetElement(li, &light); D3DCOLOR color = light->GetColor(); SceneLight extracted; extracted.color = { ((color >> 0) & 0xFF) / 255.0f, ((color >> 8) & 0xFF) / 255.0f, ((color >> 16) & 0xFF) / 255.0f, ((color >> 24) & 0xFF) / 255.0f }; D3DRMLIGHTTYPE type = light->GetType(); if (type == D3DRMLIGHT_POINT || type == D3DRMLIGHT_SPOT || type == D3DRMLIGHT_PARALLELPOINT) { extracted.position = {worldMatrix[3][0], worldMatrix[3][1], worldMatrix[3][2]}; extracted.positional = 1.f; } if (type == D3DRMLIGHT_DIRECTIONAL || type == D3DRMLIGHT_SPOT) { extracted.direction = {worldMatrix[2][0], worldMatrix[2][1], worldMatrix[2][2]}; extracted.directional = 1.f; } lights.push_back(extracted); light->Release(); } lightArray->Release(); IDirect3DRMFrameArray* children = nullptr; frame->GetChildren(&children); DWORD n = children->GetSize(); for (DWORD i = 0; i < n; ++i) { IDirect3DRMFrame* childFrame = nullptr; children->GetElement(i, &childFrame); CollectLightsFromFrame(childFrame, worldMatrix, lights); childFrame->Release(); } children->Release(); } struct Plane { D3DVECTOR normal; float d; }; void NormalizePlane(Plane& plane) { float len = sqrtf(plane.normal.x * plane.normal.x + plane.normal.y * plane.normal.y + plane.normal.z * plane.normal.z); if (len > 0.0f) { float invLen = 1.0f / len; plane.normal.x *= invLen; plane.normal.y *= invLen; plane.normal.z *= invLen; plane.d *= invLen; } } Plane frustumPlanes[6]; void ExtractFrustumPlanes(const D3DRMMATRIX4D& m) { static const int idx[][2] = {{0, 1}, {0, -1}, {1, 1}, {1, -1}, {2, 1}, {2, -1}}; for (int i = 0; i < 6; ++i) { int axis = idx[i][0], sign = idx[i][1]; frustumPlanes[i] .normal = {m[0][3] + sign * m[0][axis], m[1][3] + sign * m[1][axis], m[2][3] + sign * m[2][axis]}; frustumPlanes[i].d = m[3][3] + sign * m[3][axis]; NormalizePlane(frustumPlanes[i]); } } bool IsBoxInFrustum(const D3DVECTOR corners[8], const Plane planes[6]) { for (int i = 0; i < 6; ++i) { int out = 0; for (int j = 0; j < 8; ++j) { float dist = planes[i].normal.x * corners[j].x + planes[i].normal.y * corners[j].y + planes[i].normal.z * corners[j].z + planes[i].d; if (dist < 0.0f) { ++out; } } if (out == 8) { return false; } } return true; } void Direct3DRMViewportImpl::CollectMeshesFromFrame(IDirect3DRMFrame* frame, D3DRMMATRIX4D parentMatrix) { Direct3DRMFrameImpl* frameImpl = static_cast(frame); D3DRMMATRIX4D localMatrix; memcpy(localMatrix, frameImpl->m_transform, sizeof(D3DRMMATRIX4D)); D3DRMMATRIX4D worldMatrix; D3DRMMatrixMultiply(worldMatrix, parentMatrix, localMatrix); Matrix3x3 worldMatrixInvert; D3DRMMatrixInvertForNormal(worldMatrixInvert, worldMatrix); IDirect3DRMVisualArray* visuals = nullptr; frame->GetVisuals(&visuals); DWORD n = visuals->GetSize(); for (DWORD i = 0; i < n; ++i) { IDirect3DRMVisual* visual = nullptr; visuals->GetElement(i, &visual); IDirect3DRMFrame* childFrame = nullptr; visual->QueryInterface(IID_IDirect3DRMFrame, (void**) &childFrame); if (childFrame) { CollectMeshesFromFrame(childFrame, worldMatrix); childFrame->Release(); visual->Release(); continue; } IDirect3DRMMesh* mesh = nullptr; visual->QueryInterface(IID_IDirect3DRMMesh, (void**) &mesh); if (!mesh) { visual->Release(); continue; } D3DRMBOX box; mesh->GetBox(&box); D3DVECTOR boxCorners[8] = { {box.min.x, box.min.y, box.min.z}, {box.min.x, box.min.y, box.max.z}, {box.min.x, box.max.y, box.min.z}, {box.min.x, box.max.y, box.max.z}, {box.max.x, box.min.y, box.min.z}, {box.max.x, box.min.y, box.max.z}, {box.max.x, box.max.y, box.min.z}, {box.max.x, box.max.y, box.max.z}, }; for (D3DVECTOR& boxCorner : boxCorners) { boxCorner = TransformPoint(boxCorner, worldMatrix); } if (!IsBoxInFrustum(boxCorners, frustumPlanes)) { mesh->Release(); visual->Release(); continue; } DWORD groupCount = mesh->GetGroupCount(); for (DWORD gi = 0; gi < groupCount; ++gi) { DWORD vtxCount, faceCount, vpf, dataSize; mesh->GetGroup(gi, &vtxCount, &faceCount, &vpf, &dataSize, nullptr); std::vector verts(dataSize * vpf); std::vector d3dVerts(vtxCount); std::vector faces(dataSize); mesh->GetVertices(gi, 0, vtxCount, d3dVerts.data()); mesh->GetGroup(gi, nullptr, nullptr, nullptr, nullptr, faces.data()); D3DCOLOR color = mesh->GetGroupColor(gi); D3DRMRENDERQUALITY quality = mesh->GetGroupQuality(gi); IDirect3DRMTexture* texture = nullptr; mesh->GetGroupTexture(gi, &texture); Uint32 textureId = NO_TEXTURE_ID; if (texture) { textureId = m_renderer->GetTextureId(texture); texture->Release(); } IDirect3DRMMaterial* material = nullptr; mesh->GetGroupMaterial(gi, &material); float shininess = 0.0f; if (material) { shininess = material->GetPower(); material->Release(); } for (DWORD fi = 0; fi < faceCount; ++fi) { D3DVECTOR norm; if (quality == D3DRMRENDER_FLAT || quality == D3DRMRENDER_UNLITFLAT) { D3DRMVERTEX& v0 = d3dVerts[faces[fi * vpf + 0]]; D3DRMVERTEX& v1 = d3dVerts[faces[fi * vpf + 1]]; D3DRMVERTEX& v2 = d3dVerts[faces[fi * vpf + 2]]; norm = ComputeTriangleNormal(v0.position, v1.position, v2.position); } for (DWORD idx = 0; idx < vpf; ++idx) { D3DRMVERTEX& dv = d3dVerts[faces[fi * vpf + idx]]; D3DVECTOR pos = dv.position; if (quality == D3DRMRENDER_GOURAUD || quality == D3DRMRENDER_PHONG) { norm = dv.normal; } verts.push_back({pos, norm, {dv.tu, dv.tv}}); } } m_renderer->SubmitDraw( verts.data(), verts.size(), worldMatrix, worldMatrixInvert, {{static_cast((color >> 16) & 0xFF), static_cast((color >> 8) & 0xFF), static_cast((color >> 0) & 0xFF), static_cast((color >> 24) & 0xFF)}, shininess, textureId} ); } mesh->Release(); visual->Release(); } visuals->Release(); } HRESULT Direct3DRMViewportImpl::RenderScene() { m_backgroundColor = static_cast(m_rootFrame)->m_backgroundColor; // Compute view-projection matrix D3DRMMATRIX4D cameraWorld, viewProj; ComputeFrameWorldMatrix(m_camera, cameraWorld); D3DRMMatrixInvertOrthogonal(m_viewMatrix, cameraWorld); D3DRMMatrixMultiply(viewProj, m_viewMatrix, m_projectionMatrix); D3DRMMATRIX4D identity = {{1.f, 0.f, 0.f, 0.f}, {0.f, 1.f, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f}}; std::vector lights; CollectLightsFromFrame(m_rootFrame, identity, lights); m_renderer->PushLights(lights.data(), lights.size()); HRESULT status = m_renderer->BeginFrame(m_viewMatrix); if (status != DD_OK) { return status; } ExtractFrustumPlanes(viewProj); CollectMeshesFromFrame(m_rootFrame, identity); return m_renderer->FinalizeFrame(); } HRESULT Direct3DRMViewportImpl::Render(IDirect3DRMFrame* rootFrame) { if (!m_renderer) { return DDERR_GENERIC; } m_rootFrame = rootFrame; return RenderScene(); } HRESULT Direct3DRMViewportImpl::ForceUpdate(int x, int y, int w, int h) { MINIWIN_NOT_IMPLEMENTED(); return DD_OK; } HRESULT Direct3DRMViewportImpl::Clear() { if (!DDBackBuffer) { return DDERR_GENERIC; } uint8_t r = (m_backgroundColor >> 16) & 0xFF; uint8_t g = (m_backgroundColor >> 8) & 0xFF; uint8_t b = m_backgroundColor & 0xFF; Uint32 color = SDL_MapRGB(SDL_GetPixelFormatDetails(DDBackBuffer->format), nullptr, r, g, b); SDL_FillSurfaceRect(DDBackBuffer, nullptr, color); return DD_OK; } HRESULT Direct3DRMViewportImpl::SetCamera(IDirect3DRMFrame* camera) { if (m_camera) { m_camera->Release(); } if (camera) { camera->AddRef(); } m_camera = camera; return DD_OK; } HRESULT Direct3DRMViewportImpl::GetCamera(IDirect3DRMFrame** camera) { if (m_camera) { m_camera->AddRef(); } *camera = m_camera; return DD_OK; } HRESULT Direct3DRMViewportImpl::SetProjection(D3DRMPROJECTIONTYPE type) { return DD_OK; } D3DRMPROJECTIONTYPE Direct3DRMViewportImpl::GetProjection() { return D3DRMPROJECTIONTYPE::PERSPECTIVE; } HRESULT Direct3DRMViewportImpl::SetFront(D3DVALUE z) { m_front = z; UpdateProjectionMatrix(); return DD_OK; } D3DVALUE Direct3DRMViewportImpl::GetFront() { return m_front; } HRESULT Direct3DRMViewportImpl::SetBack(D3DVALUE z) { m_back = z; UpdateProjectionMatrix(); return DD_OK; } D3DVALUE Direct3DRMViewportImpl::GetBack() { return m_back; } HRESULT Direct3DRMViewportImpl::SetField(D3DVALUE field) { m_field = field; UpdateProjectionMatrix(); return DD_OK; } void Direct3DRMViewportImpl::UpdateProjectionMatrix() { float aspect = (float) m_width / (float) m_height; float f = m_front / m_field; float depth = m_back - m_front; D3DRMMATRIX4D projection = { {f, 0, 0, 0}, {0, f * aspect, 0, 0}, {0, 0, m_back / depth, 1}, {0, 0, (-m_front * m_back) / depth, 0}, }; memcpy(m_projectionMatrix, projection, sizeof(D3DRMMATRIX4D)); m_renderer->SetProjection(projection, m_front, m_back); D3DRMMATRIX4D inverseProjectionMatrix = { {1.0f / f, 0, 0, 0}, {0, 1.0f / (f * aspect), 0, 0}, {0, 0, 0, depth / (-m_front * m_back)}, {0, 0, 1, -(m_back / depth) * depth / (-m_front * m_back)}, }; memcpy(m_inverseProjectionMatrix, inverseProjectionMatrix, sizeof(D3DRMMATRIX4D)); } D3DVALUE Direct3DRMViewportImpl::GetField() { return m_field; } DWORD Direct3DRMViewportImpl::GetWidth() { return m_width; } DWORD Direct3DRMViewportImpl::GetHeight() { return m_height; } inline float FromNDC(float ndcCoord, float dim) { return (ndcCoord * 0.5f + 0.5f) * dim; } inline void MultiplyMatrixVec4(D3DRMVECTOR4D& out, const D3DRMMATRIX4D& mat, const D3DRMVECTOR4D& vec) { out.x = mat[0][0] * vec.x + mat[1][0] * vec.y + mat[2][0] * vec.z + mat[3][0] * vec.w; out.y = mat[0][1] * vec.x + mat[1][1] * vec.y + mat[2][1] * vec.z + mat[3][1] * vec.w; out.z = mat[0][2] * vec.x + mat[1][2] * vec.y + mat[2][2] * vec.z + mat[3][2] * vec.w; out.w = mat[0][3] * vec.x + mat[1][3] * vec.y + mat[2][3] * vec.z + mat[3][3] * vec.w; } HRESULT Direct3DRMViewportImpl::Transform(D3DRMVECTOR4D* screen, D3DVECTOR* world) { D3DRMVECTOR4D worldVec = {world->x, world->y, world->z, 1.0f}; D3DRMVECTOR4D viewVec, projVec; MultiplyMatrixVec4(viewVec, m_viewMatrix, worldVec); MultiplyMatrixVec4(projVec, m_projectionMatrix, viewVec); *screen = projVec; float invW = 1.0f / projVec.w; float ndcX = projVec.x * invW; float ndcY = projVec.y * invW; screen->x = FromNDC(ndcX, m_width); screen->y = FromNDC(-ndcY, m_height); // Y-flip // Undo perspective divide for screen-space coords screen->x *= projVec.z; screen->y *= projVec.w; return DD_OK; } HRESULT Direct3DRMViewportImpl::InverseTransform(D3DVECTOR* world, D3DRMVECTOR4D* screen) { // Convert to screen coordinates float screenX = screen->x / screen->z; float screenY = screen->y / screen->w; // Convert screen coordinates to NDC float ndcX = screenX / m_width * 2.0f - 1.0f; float ndcY = 1.0f - (screenY / m_height) * 2.0f; D3DRMVECTOR4D clipVec = {ndcX * screen->w, ndcY * screen->w, screen->z, screen->w}; D3DRMVECTOR4D viewVec; MultiplyMatrixVec4(viewVec, m_inverseProjectionMatrix, clipVec); D3DRMMATRIX4D inverseViewMatrix; D3DRMMatrixInvertOrthogonal(inverseViewMatrix, m_viewMatrix); D3DRMVECTOR4D worldVec; MultiplyMatrixVec4(worldVec, inverseViewMatrix, viewVec); // Perspective divide if (worldVec.w != 0.0f) { world->x = worldVec.x / worldVec.w; world->y = worldVec.y / worldVec.w; world->z = worldVec.z / worldVec.w; } else { world->x = worldVec.x; world->y = worldVec.y; world->z = worldVec.z; } return DD_OK; } struct Ray { D3DVECTOR origin; D3DVECTOR direction; }; // Ray-box intersection: slab method bool RayIntersectsBox(const Ray& ray, const D3DRMBOX& box, float& outT) { float tmin = -FLT_MAX; float tmax = FLT_MAX; for (int i = 0; i < 3; ++i) { float origin = (&ray.origin.x)[i]; float dir = (&ray.direction.x)[i]; float minB = (&box.min.x)[i]; float maxB = (&box.max.x)[i]; if (fabs(dir) < 1e-6f) { if (origin < minB || origin > maxB) { return false; } } else { float invD = 1.0f / dir; float t1 = (minB - origin) * invD; float t2 = (maxB - origin) * invD; if (t1 > t2) { std::swap(t1, t2); } if (t1 > tmin) { tmin = t1; } if (t2 < tmax) { tmax = t2; } if (tmin > tmax) { return false; } if (tmax < 0) { return false; } } } outT = tmin >= 0 ? tmin : tmax; // closest positive hit return true; } inline float DotProduct(const D3DVECTOR& a, const D3DVECTOR& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } // Convert screen (x,y) in viewport to picking ray in world space Ray BuildPickingRay( float x, float y, int width, int height, IDirect3DRMFrame* camera, float front, float back, float field, float aspect ) { float nx = (2.0f * x) / width - 1.0f; float ny = 1.0f - (2.0f * y) / height; float f = front / field; // Ray in view space at near plane: D3DVECTOR rayDirView = {nx / f, ny / (f * aspect), 1.0f}; // Normalize ray direction float len = sqrt(DotProduct(rayDirView, rayDirView)); rayDirView = Normalize(rayDirView); // Compute camera world matrix and invert it to get view->world D3DRMMATRIX4D cameraWorld; ComputeFrameWorldMatrix(camera, cameraWorld); // Transform ray origin (camera position) and direction to world space D3DVECTOR rayOriginWorld = {cameraWorld[3][0], cameraWorld[3][1], cameraWorld[3][2]}; // Multiply direction by rotation part of matrix only (3x3 upper-left) D3DVECTOR rayDirWorld = { rayDirView.x * cameraWorld[0][0] + rayDirView.y * cameraWorld[1][0] + rayDirView.z * cameraWorld[2][0], rayDirView.x * cameraWorld[0][1] + rayDirView.y * cameraWorld[1][1] + rayDirView.z * cameraWorld[2][1], rayDirView.x * cameraWorld[0][2] + rayDirView.y * cameraWorld[1][2] + rayDirView.z * cameraWorld[2][2] }; len = sqrt(rayDirWorld.x * rayDirWorld.x + rayDirWorld.y * rayDirWorld.y + rayDirWorld.z * rayDirWorld.z); rayDirWorld = Normalize(rayDirWorld); return Ray{rayOriginWorld, rayDirWorld}; } bool RayIntersectsTriangle( const Ray& ray, const D3DVECTOR& v0, const D3DVECTOR& v1, const D3DVECTOR& v2, float& outDist ) { const float EPSILON = 1e-6f; D3DVECTOR edge1 = {v1.x - v0.x, v1.y - v0.y, v1.z - v0.z}; D3DVECTOR edge2 = {v2.x - v0.x, v2.y - v0.y, v2.z - v0.z}; D3DVECTOR h = CrossProduct(ray.direction, edge2); float a = DotProduct(edge1, h); if (fabs(a) < EPSILON) { return false; } float f = 1.0f / a; D3DVECTOR s = {ray.origin.x - v0.x, ray.origin.y - v0.y, ray.origin.z - v0.z}; float u = f * DotProduct(s, h); if (u < 0.0f || u > 1.0f) { return false; } D3DVECTOR q = CrossProduct(s, edge1); float v = f * DotProduct(ray.direction, q); if (v < 0.0f || u + v > 1.0f) { return false; } float t = f * DotProduct(edge2, q); if (t > EPSILON) { outDist = t; return true; } return false; } bool RayIntersectsMeshTriangles( const Ray& ray, IDirect3DRMMesh* mesh, const D3DRMMATRIX4D& worldMatrix, float& outDistance ) { DWORD groupCount = mesh->GetGroupCount(); for (DWORD g = 0; g < groupCount; ++g) { DWORD vtxCount = 0, faceCount = 0, vpf = 0, dataSize = 0; mesh->GetGroup(g, &vtxCount, &faceCount, &vpf, &dataSize, nullptr); std::vector vertices(vtxCount); mesh->GetVertices(g, 0, vtxCount, vertices.data()); std::vector faces(faceCount * vpf); mesh->GetGroup(g, nullptr, nullptr, nullptr, nullptr, faces.data()); // Iterate over each face and do ray-triangle tests for (DWORD fi = 0; fi < faceCount; ++fi) { DWORD i0 = faces[fi * vpf + 0]; DWORD i1 = faces[fi * vpf + 1]; DWORD i2 = faces[fi * vpf + 2]; if (i0 >= vtxCount || i1 >= vtxCount || i2 >= vtxCount) { continue; } // Transform vertices to world space D3DVECTOR tri[3]; for (int j = 0; j < 3; ++j) { const D3DVECTOR& v = vertices[(j == 0 ? i0 : (j == 1 ? i1 : i2))].position; tri[j] = TransformPoint(v, worldMatrix); } float dist; if (RayIntersectsTriangle(ray, tri[0], tri[1], tri[2], dist)) { if (dist < outDistance) { outDistance = dist; } return true; } } } return false; } inline D3DVECTOR TransformVector(const D3DRMMATRIX4D& mat, const D3DVECTOR& vec) { return { vec.x * mat[0][0] + vec.y * mat[1][0] + vec.z * mat[2][0] + mat[3][0], vec.x * mat[0][1] + vec.y * mat[1][1] + vec.z * mat[2][1] + mat[3][1], vec.x * mat[0][2] + vec.y * mat[1][2] + vec.z * mat[2][2] + mat[3][2] }; } D3DRMBOX ComputeTransformedAABB(const D3DRMBOX& box, const D3DRMMATRIX4D& mat) { D3DVECTOR corners[8] = { {box.min.x, box.min.y, box.min.z}, {box.min.x, box.min.y, box.max.z}, {box.min.x, box.max.y, box.min.z}, {box.min.x, box.max.y, box.max.z}, {box.max.x, box.min.y, box.min.z}, {box.max.x, box.min.y, box.max.z}, {box.max.x, box.max.y, box.min.z}, {box.max.x, box.max.y, box.max.z} }; D3DVECTOR transformed = TransformVector(mat, corners[0]); D3DRMBOX worldBox = {transformed, transformed}; for (int i = 1; i < 8; ++i) { D3DVECTOR v = TransformVector(mat, corners[i]); worldBox.min.x = std::min(worldBox.min.x, v.x); worldBox.min.y = std::min(worldBox.min.y, v.y); worldBox.min.z = std::min(worldBox.min.z, v.z); worldBox.max.x = std::max(worldBox.max.x, v.x); worldBox.max.y = std::max(worldBox.max.y, v.y); worldBox.max.z = std::max(worldBox.max.z, v.z); } return worldBox; } HRESULT Direct3DRMViewportImpl::Pick(float x, float y, LPDIRECT3DRMPICKEDARRAY* pickedArray) { if (!m_rootFrame) { return DDERR_GENERIC; } std::vector hits; Ray pickRay = BuildPickingRay( x, y, m_width, m_height, m_camera, m_front, m_back, m_field, (float) m_width / (float) m_height ); std::function&)> recurse; recurse = [&](IDirect3DRMFrame* frame, std::vector& path) { path.push_back(frame); IDirect3DRMVisualArray* visuals = nullptr; frame->GetVisuals(&visuals); DWORD count = visuals->GetSize(); for (DWORD i = 0; i < count; ++i) { IDirect3DRMVisual* visual = nullptr; visuals->GetElement(i, &visual); IDirect3DRMFrame* subFrame = nullptr; visual->QueryInterface(IID_IDirect3DRMFrame, (void**) &subFrame); if (subFrame) { recurse(subFrame, path); subFrame->Release(); visual->Release(); continue; } IDirect3DRMMesh* mesh = nullptr; visual->QueryInterface(IID_IDirect3DRMMesh, (void**) &mesh); if (mesh) { D3DRMBOX box; mesh->GetBox(&box); // Transform box corners to world space D3DRMMATRIX4D worldMatrix; ComputeFrameWorldMatrix(frame, worldMatrix); D3DRMBOX worldBox = ComputeTransformedAABB(box, worldMatrix); float distance = FLT_MAX; if (RayIntersectsBox(pickRay, worldBox, distance) && RayIntersectsMeshTriangles(pickRay, mesh, worldMatrix, distance)) { auto* arr = new Direct3DRMFrameArrayImpl(); for (IDirect3DRMFrame* f : path) { arr->AddElement(f); } PickRecord rec = {visual, arr, {distance}}; hits.push_back(rec); } mesh->Release(); } visual->Release(); } visuals->Release(); path.pop_back(); // Pop after recursion }; std::vector framePath; recurse(m_rootFrame, framePath); std::sort(hits.begin(), hits.end(), [](const PickRecord& a, const PickRecord& b) { return a.desc.dist < b.desc.dist; }); *pickedArray = new Direct3DRMPickedArrayImpl(hits.data(), hits.size()); return D3DRM_OK; } void Direct3DRMViewportImpl::CloseDevice() { m_renderer = nullptr; }